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Abstract
Fuzzy entropy is designed for non convex fuzzy membership function using well known Hamming distance measure. Design procedure of

convex fuzzy membership function is represented through distance measure. furthermore characteristic analysis for non convex function are

also illustrated. Proof of proposed fuzzy entropy is discussed. and entropy computation is illustrated.
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1. Introduction

Characterization and quantification of fuzziness are
important issues about the data management. Especially the
management of uncertainty affect in many system model and
designing problem. The results about the fuzzy set entropy have
been well known by the previous researchers [1-6]. Liu had
proposed the axiomatic definitions of entropy, distance measure
and similarity measure, and discussed the relations between
these three concepts. Kosko viewed the relation between
distance measure and fuzzy entropy. Bhandari and Pal gave a
fuzzy information measure for discrimination of a fuzzy set
relative to some other fuzzy set. Pal and Pal analyzed the
classical Shannon information entropy. Also Ghosh used this
entropy to neural network. However, all these results are based
on the convex fuzzy membership functions.

For fuzzy set, uncertainty knowledge in fuzzy set can be
obtained through analyzing fuzzy set itself. Thus most studies
about fuzzy set are emphasized on considering membership
function. At this point we have an interest for non convex fuzzy
membership. Applying fuzzy entropy to non convex fuzzy
membership function, first we analyze the characteristics for
fuzzy sets. With previous result of fuzzy entropy, we have
designed the fuzzy entropy for non convex membership
function [7]. The fuzzy entropy was designed based on the
distance measure. Entropy value is proportional to the
difference area between fuzzy set membership function and
crisp set. However, considered fuzzy membership function was
restricted to convex-type fuzzy membership function.

In this paper, we extend the fuzzy entropy for convex
membership function to the non convex membership function.
To overcome sharpening and complementary properties of
fuzzy entropy definition, it is required to add assumptions. To
verify the usefulness of proposed fuzzy entropy for non convex
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membership function, we also utilize the definition of fuzzy
entropy.

In the next chapter, the axiomatic definitions of entropy,
previous fuzzy entropy for convex membership function are
introduced. Preliminary study of non convex membership
function is proposed in Chapter 3. Fuzzy entropy for non
convex membership function is derived and proved in Chapter
4. Finally, conclusions are followed in Chapter 5. Notations of
Liu's are used in this paper [4].

2. Fuzzy entropy

Study on the fuzzy entropy analysis has been studied through
designing fuzzy entropy for fuzzy set. Furthermore most
researches are emphasized on the design of explicit entropy
measure with distance measure or fuzzy numbers. In this
chapter, we first introduce definition of fuzzy entropy and our
previous fuzzy entropy results.

2.1 Preliminary results

We introduce some preliminary results about axiomatic
definitions of fuzzy entropy and related results. Definition 2.1
represents the axiomatic definition of fuzzy entropy.

Definition 2.1 [4] A real function e:F(X)— R" is called an
entropy on F(X), or P(X) if e has the following
properties:

(E1) e(D)=0,vD e P(X)
(E2) e([1/2]) =max ,p 4, e(4)

(E3) e(A’)<e(A), for any sharpening A of 4
(E4)  e(4) = e(A°), YA€ F(X).

where [1/2] is the fuzzy set in which the value of the
membership function is 172, R* :[0,00), X is the universal
set, F(x) is the class of all fuzzy sets of x, P(X) is the

class of all crisp sets of X and D¢ is the complement of D.
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A lot of fuzzy entropy satisfying Definition 2.1 can be
formulated. We have designed fuzzy entropy in our previous
literature [7]. Proposed fuzzy entropies are designed based on
the distance measure. We had also proved the usefulness in our
previous literatures. Two fuzzy entropies have their own strong
points in measure themselves. Now two fuzzy entropies are
illustrated without proofs.

Fuzzy entropy 1. If distance o satisfies d(A4,B)= d(A“,B")q
A,BeF(X),then

e{d)=2d((4n 4, ).[1)))+2d((4w4,,).[0])-2 (D

is fuzzy entropy.

Fuzzy entropy 2. If distance J satisfies a’(A,B):d(A",B('),
A4,Be F(X), then

e(4)=2d((4r 4, ).[0])+2d((4v 4, ).[1]) (2)

is also fuzzy entropy.
Exact meaning of fuzzy entropy of fuzzy set A is fuzziness

of fuzzy set A4 with respect to crisp set. We commonly
consider crisp sets as A or 4 Here membership

near far

function of 4

near

or A, arerepresented by

a, (x)=1 for p,(x)21/2,

ncar

M, (x)=0 for u,(x)<l1/2

Anear

and

M, ()=0 for u,(x)z1/2,
u, (xy=1 for u (x)<1/2.

In the above fuzzy entropies, one of well known Hamming
distance is commonly used as distance measure between fuzzy
sets 4 and B,

1 a
d(A,B):EZQ,LIA(X’)flLlB(xl)‘

i=]

where X ={x x,,x}, ‘k‘ is the absolute value of & .
i, (x) is the membership function of AcF(X)- Basically

fuzzy entropy is proportional to the ditference area between
fuzzy membership function and its crisp sets.

Fuzzy entropy (1) and (2) satisfy Definition 2.1. However,
Definition 2.1 does not restrict to convex fuzzy membership
function. Next, we introduce non convex fuzzy membership
function. Definition of non convex fuzzy membership function
can be found in reference [8]. Non convex fuzzy sets are not
common fuzzy membership function. Definition of non
convexity derived from convexity definitely.

2.2 Non Convex Membership Function
By Jang et.al., it has been known that definition of convexity
of a fuzzy set is not as strict as the common definition of

convexity of a function [8].
definition of convexity for fuzzy set not general function.

Definition 2.2 represents the

Definition 2.2 [8] A fuzzy set 4 is convex if and only if for
any x,, x, <X andany4¢<[0,1],

,(Ax, + (1= A)x,)y = mindu, (x), 1,(%,)} 3)

Non convex fuzzy set is said if it is not convex. Non convex
fuzzy membership functions can be notified naturally 3 sub
classes [9].

- Elementary non convex membership functions
- Time related non convex membership functions
- Consequent non convex membership functions

First, a discrete fuzzy set express elementary non convex
fuzzy membership functions. However continuous domain non
convex fuzzy set may be less common.

Next, time related non convex membership functions can be
found in energy supply by time of day or year, mealtime by
time of day. This fuzzy set is interesting as it is also sub-normal
and never has a membership of zero.

Finally, Mamdani fuzzy inferencing is a typical example of
consequent non convex sets. In a rule based fuzzy system the
result of Mamdani fuzzy inferencing is a non convex fuzzy set
where the antecedent and consequent fuzzy sets are triangular
and/or trapezoidal.

Jang er.al insisted that the definition of convexity of a fuzzy
set is not as strict as the common definition of convexity of a
function [14]. Then the definition of convexity of a function is

fx+A=-Dx) 2 Af () +A=-A)f(x,) “)

which is a tighter condition than (3). Following figures show
two convex and non convex fuzzy membership functions.
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(a) Two Corwex Fuzzy Sets {b) A Noncorvex Fuzzy Set

Fig.1 Convex MF and Non convex MF [8]

Fig. 1 (a) shows two convex fuzzy sets, the left fuzzy set
satisfies both (3) and (4) while the right one satisfies (3) only.
Hence the right one is not convex for a general function.
Whereas, fuzzy set of Fig. 1(b) behaves a non convex fuzzy set.
It does not satisfy even (3).

By the definition of Jang er.al., fuzzy entropies of two convex
fuzzy membership functions of Fig. | (a) can be calculated.
However if two fuzzy set are considered as one fuzzy set, then
it has to be considered as non convex fuzzy set.
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Temperature

Fig. 2 Preference temperature of drinking milk

Fig. 2 represents the fuzzy membership function of
preference temperature of drinking milk. Drinking milk
temperature is proper as the non convex fuzzy membership
function. Medium temperature is not popular to drink. For the
non convex fuzzy membership function, how can we design
fuzzy entropy ? Studies can be considered from the analysis of
typical convex membership function fuzzy entropy. With the
corresponding crisp set, we will formulate fuzzy entropy.

3. Fuzzy entropy for non convex Membership
function

Now, we pay attention to the definition of fuzzy entropy for
fuzzy set, particularly for non convex fuzzy set. Conditions of
(El) and (E2) are natural for convex or non convex
membership function. However, conditions of (E3) and (E4) are
important to decide structure of fuzzy entropy. Sharpening
A" of non convex fuzzy set A has to also satisfy nearer crisp
set structure. Hence, A approaches to crisp set D, it is
natural to be satisfied (E1). For (E4), fuzzy entropy of
complementary fuzzy membership is the same with original
fuzzy membership function. To satisfy these characteristics, we
have to consider corresponding crisp set properly.

3.1 Fuzzy entropy for non convex membership function
In Fig. 3, we assign crisp set corresponding to non convex
fuzzy membership function as follows

Degree Anca:

Fuzzy set & Universe of discourse

Fig. 3 Fuzzy set and crisp set

For every non convex fuzzy set 4 we let crisp set 4

necr

Then two fuzzy entropy measure (1) and (2) are applicable to
non convex fuzzy membership function. Now, we can show
that two fuzzy entropy (1) and (2) are satisfied as fuzzy entropy

as non convex fuzzy membership function [6,7]. 1t is essential
to assign the crisp set 4, of fuzzy set 4. Crisp set 4 of

non convex fuzzy set A is also non convex. Next two fuzzy
entropy measures are presented as fuzzy entropy of non convex
membership function.

Theorem 3.1 If distance J satisfies d(A,B):d(AC,BC) for

CONvVex Or nOn convex 4 Be F(X) , then
e(4)=2d((4n 4,,) 1] +2d((4v 4,,).[0]) -2

satisfies fuzzy entropy.

Proof is straight forward. Proposed fuzzy entropy is
represented through the area between fuzzy membership
function and corresponding crisp set. In Fig. 3, the fuzzy
entropy is represented by shaded area. We have to check for
non convex fuzzy set case. By analyzing the properties of
Definition 2.1, Tt will be simple to prove (E1) and (E2). We
summarize the proof of (E1) and (E2) briefly.

For (E1),vD e P(X),
Dy =2d(D D)D) +2d(Duw D, )[0])-2

near near

=2d(D,[1]) +2d(D,[0)) =2 = 0.

It is also satisfied from D =D . (E2) represents that crisp

set 1/2 has the maximum entropy 1. Therefore, the entropy
measure e([1/2]) satisfies

(172D =240/ 21 [1/2],,, 1D +24(([/ 2100/ 2],,, ).[0D -2

= 2d(((1/ 201+ 24/ 2] ULDL0D -2
=2-1/2+2-1-2=1L

In the above equation, [1/2] =[] is satisfied. Fuzzy

entropy measure (1) was designed for normal fuzzy entropy.
Hence, it has maximal value as one.
(E3) shows that the entropy of the sharpened version of fuzzy
set 4, e(A), is less than or equal to e(4). For the proof,
=4  isalso used:

near near

e(A'y=2d((4" N A, ) +2d((4 U4, ). 10D -2

=2d((A A )Y +2d((4 U 4,,).[0) -2

<2d((AN A, )01 +2d((AU A4, 0.[0D -2
=e(4).

The inequality in the above equation is satisfied because the
fuzzy entropy is proportional to the shaded area in Fig. 3 and
the property, d(4', 4, )<d(4,4,,) in[10].

Finally, (E4) is proved

assumption d(A°, B ) = d(4,B); hence we have

near

using the

e(A)=2d((An A4 )[ID+2d((AU A, ),[0D)-2

=2d((4° U A5, ) [0D +2d((4° ™ AL )1 -2
= e(A%).

Through our analysis to the non convex fuzzy membership
function, we have found out that the fuzzy entropy (1) is
applicable to non convex fuzzy membership function too. We
can insist that our previous dual result can be also applicable to
non convex fuzzy membership function.
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Theorem 3.2 If distance d satisties d(A,B):d(A",B“) and

for convex or non convex 4 Be F(Xx),

e(4)=2d((4r4,,)[0])+ 2d ({4 4, ) (1))

is also fuzzy entropy.

Proof is similar to those of Theorem 3.1. In Theorem 3.2,
computation of d(( A A,w),[‘)]) and d(( AU A)m) are
preformed twice.

For non convex fuzzy set, it is also applicable with convex

fuzzy entropy computation. However, proper assignment of
crisp set is required to formulate fuzzy entropy measure.

3.2 Illustrative example

In this section, we present the example about deciding
normal or fault condition from flight system coefficients. The
flight control system is generally equipped with redundancy
features in order to increase the safety of the aircraft,
particularly in cases where the aircraft is damaged due to
malfunctioning of the control surface region. If the extent of the
damage is determined after the occurrence of the failure, the
fault tolerant control system is capable of adapting to the
various faults in real time. Therefore, the pilot or the flight
control system accomplishes the mission or returns to the safety
region. Here, C, . C, ,and C; are the pitching moment

coefficient with changes of elevator deflection, change in
pitching moment coefficient with angle of attack and change in
lift coefficient with angle of attack, respectively. Scatter
diagrams of C,, and C, are easy to discriminate, which one

is normal or fault. However data points of C, are mixed, and
it i$ not easy to discriminate. Scatter diagram of C, is

illustrated in Fig. 4.

¢
&

True Airspeed (n/sec)

Fig. 4 Scatter diagram of CL( coetticients

For constructing the fuzzy membership function coefficient
values of €, , C, and C, are partitioned into eight

groups, and the number of data are normalized. The fault
detection procedures comprise similarity computation and

detection. Similarity computations are performed by using the
similarity measure, and the detection procedure requires further
reference data and consideration. Mentioned similarity measure
can be obtained through analysis of fuzzy entropy and distance
measure [11]. Now we formulate fuzzy membership functions
of C, and C, in Fig. 5. As shown in figures, fuzzy
membership functions are shown as the non convex types. Here
we present the similarity measure as follows.

The control surface stuck is determined by monitoring the
value of C, ; This facilitates the discrimination between

normal and fault conditions. Hence, the two fuzzy membership
functions are clearly separated. First, we consider the similarity
measure using C,, , as follows [11];

s (Fy Fo) =2 d((F, VF) ) -~ d((F, UF).[01,).

Here, F, and F, denote the normal and fault fuzzy

membership functions from Fig. 5. Further, we propose another

similarity measure using C,, and C,

s (FF)=2-d((F NE) ) —d((F, UF,).[0],)
and s (F\.F,) =2=d((F, N F)1) - d((Fy, UF,)[01,).

Six data points in Fig. 4 are selected to calculate and analyze
the characteristics. Point a to f of C, are also listed in Fig. 4,

as follows:

a=49974, b =5.6780, ¢ = 57549, d = 5.5991, e = 5.56238,
f=5.4462.

The locations of the six points are in the mixed area between
the normal and fault conditions. It is necessary to calculate the
similarity measure corresponding to the membership values;
hence, the membership values of point a and d are illustrated in
Fig. 5.

Now, we calculate the tendency of normal or fault conditions
for six points. The value of s, (F,,F,)is classified into

normal and fault conditions by s (#,.p) and s (p,F,) for
fault point p. Similarly, the other similarities s (F,F,) and
s, (F,,F,) arealso classified from a to f. In Table 1, Points

a, b and c¢ are fault data, whereas the others are all normal.
To calculate the degree of similarity for normal operation
with data p can be obtained as;

s(F,,p) = ws (Fy.p)+ ws (Fy.p)+ wss, (F,.p)-

Calculating the degree of similarity for fault operation is
obtained similar way. In Table 1, we notice that the similarity
measure for three fault cases a, b, and ¢ are greater than those
for normal cases. Where the weighting factorsw,, w, and

w, are all considered as one. This implies that the fault

decisions are accurate by similarity computations and
comparisons. Furthermore, three normal cases also represent
correct decisions.
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Fig. 5 Membership functions of the C,, and C, coefficients

Table 1. Computation of Similarity Measure

a b c d e f
s, (Fy:p)| o 0 0 | 077 | 077 | 054
S| 1 1 o | o | o

s (FysP)| o | o042 | 083 | 083 | 1 |04

s, F) | 1 | 073 | 062 | 064 | 023 | 073

s, (Fy:P) | 067 | 1 1 1 1 1

s, (P FE) | 074 | 1 1 1 Lo

S(EV ,D) 0.67 1.42 1.83 2.60 | 2.77 | 2.73

s(p, £7) 274 | 273 | 262 | 164 | 123 | 1.73

4. Conclusions

Fuzzy entropy of non convex fuzzy membership function is
designed. Non convex fuzzy membership function is introduced
and its property was discussed. Furthermore, characteristic
analysis for non convex function is also illustrated. Our fuzzy
entropy measure for fuzzy set is also applicable to non convex
fuzzy membership function. We have discussed this fact, it is
essential to assign corresponding crisp set. We have found out
that the corresponding crisp set is also non convex set. We have

formulated similarity measure with fuzzy entropy and distance
measure, fault decision problem is applied with this similarity
measure.
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