DOI QR코드

DOI QR Code

수열합성법에 의한 3차원 ZnO 나노구조체 합성

Synthesis of 3D Nanostructured Flower-like ZnO Architecture on ZnO Thin-film by Hydrothermal Process

  • 유범근 (한국과학기술연구원 박막연구센터) ;
  • 박용욱 (남서울대학교 전자공학과) ;
  • 강종윤 (한국과학기술연구원 박막연구센터) ;
  • 김진상 (한국과학기술연구원 박막연구센터) ;
  • 윤석진 (한국과학기술연구원 박막연구센터)
  • 투고 : 2009.07.16
  • 심사 : 2009.09.21
  • 발행 : 2009.10.01

초록

Recently, the control of size, morphology and dimensionality in inorganic materials has been rapidly developed into a promising field in materials chemistry. 3D nanostructured flower-like ZnO architecture with different size and shapes have been simply synthesized by hydrothermal process, using zinc acetate and ammonium hydroxide as reactants. In this study, the ZnO thin-films were deposited by RF magnetron sputtering in other to get high adhesion and uniformity of 3D nanostructured flower-like ZnO architecture on a $SiO_2$ substrate. The XRD patterns identified that the obtained the nanocrystallized ZnO architecture exhibited a wurtzite structure. SEM images illustrated that the flower-like ZnO bundles consisted of flower-like or chestnut bur, which were characterized by polycrystalline and (002) preferential orientation.

키워드

참고문헌

  1. H. Kind, H. Yan, M. Law, B. Messer, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches”, Advanced Materials, Vol. 14, p. 158, 2002. https://doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
  2. C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, and S. T. Lee, “High-density, ordered ultraviolet lightemitting ZnO nanowire arrays”, Advanced Materials, Vol. 15, p. 838, 2003. https://doi.org/10.1002/adma.200304430
  3. X. Y. Kong and Z. L. Wang, “Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts”, NanoLetter, Vol. 3, p. 1625, 2003. https://doi.org/10.1021/nl034463p
  4. H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, “Growth of epitaxial nanowires at the junctions of nanowalls”, Science, Vol. 300, p. 1249, 2003. https://doi.org/10.1126/science.1082542
  5. J. Q. Hu and Y. Bando, “Growth and optical properties of single-crystal tubular ZnO whiskers”, Applied Physics Letter, Vol. 82, p. 1401, 2003. https://doi.org/10.1063/1.1558899
  6. M. Guo, P. Diao, and S. H. M. Cai, “Hydrothermal growth of perpendicularly orien ted ZnO nanorod array film and its photo electrochemical properties”, Applied Surface Science, Vol. 249, p. 71, 2005. https://doi.org/10.1016/j.apsusc.2004.11.053
  7. L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes”, Chemistry of Materials, Vol. 13, p. 4395, 2001. https://doi.org/10.1021/cm011160s
  8. J. Y. Lao, J. Y. Huang, D. Z. Wang, and Z. F. Ren, “ZnO nanobridges and nanonails”, NanoLetter, Vol. 3, p. 235, 2003. https://doi.org/10.1021/nl025884u
  9. C. Klingshirn, “The luminescence of ZnO under high one- and two-quantum excitation”, Physica Status Solid B, Vol. 71, p. 547, 1975. https://doi.org/10.1002/pssb.2220710216
  10. R. F. Service, “Materials science: Will UV lasers beat the blues”, Science, Vol. 276, p. 895, 1997. https://doi.org/10.1126/science.276.5314.895
  11. T. Minami, S. Suzuki, and T. Miyata, “Transparent conducting impurity-co-doped Zn O:Al thin films prepared by magnetron sputt ering”, Thin Solid Films, Vol. 398, p. 53, 2001. https://doi.org/10.1016/S0040-6090(01)01303-7
  12. Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, “Efficient field emission from ZnO nanoneedle arrays”, Appl. Phys. Lett., Vol. 83, p. 144, 2003. https://doi.org/10.1063/1.1589166
  13. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, Vol. 292, p. 1897, 2001. https://doi.org/10.1126/science.1060367
  14. R. Konenkamp, Robert C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode”, Appl. Phys. Lett., Vol. 85, p. 6004, 2004. https://doi.org/10.1063/1.1836873
  15. Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Appl. Phys. Lett., Vol. 84, p.3654, 2004. https://doi.org/10.1063/1.1738932
  16. J. B. Baxter and E. S. Aydil, “Nanowirebased dye-sensitized solar cells”, Appl. Phys. Lett., Vol. 86, p. 053114, 2005. https://doi.org/10.1063/1.1861510
  17. H. Jeon, V. P. Verma, K. Noh, D. H. Kim, W. Choi, and M. Jeon, “Fabrication and characteristics of zinc oxide- and gallium doped zinc oxide thin film transistor using radio frequency magnetron sputtering at room temperature”, J. Kor. Vac. Soc., Vol. 16, p. 359, 2007. https://doi.org/10.5757/JKVS.2007.16.5.359
  18. S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh, and C. J. Lee, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chemical Physics Letter, Vol. 363, p. 134, 2002. https://doi.org/10.1016/S0009-2614(02)01145-4
  19. J. J. Wu and S. C. Liu, “Catalyst-free growth and characterization of ZnO nano rods”, J. Phys. Chem. B, Vol. 106, p. 9546, 2002. https://doi.org/10.1021/jp025969j
  20. D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, and W. C. Harsch, “Electrical properties of bulk ZnO”, Solid State Commun., Vol. 105, p. 399, 1998. https://doi.org/10.1016/S0038-1098(97)10145-4