DOI QR코드

DOI QR Code

General Properties of Phytase Produced by Fluorescent Pseudomonas sp. BUN1

토양세균 Fluorescent Pseudomonas sp. BUN 1 균주 유래의 파이테이즈(Phytase)의 일반적 특성규명

  • Cho, Jaie-Soon (Department of Animal Sciences & Environment, College of Animal Bioscience & Technology, Konkuk University)
  • 조재순 (건국대학교 동물생명과학대학 동물생산환경학)
  • Received : 2009.01.08
  • Accepted : 2009.04.01
  • Published : 2009.04.01

Abstract

A bacterial strain producing intracellular phytase was isolated from cultivable soil near cowsheds and identified as a fluorescent Pseudomonas sp. BUN1. The BUN1 phytase, partially purified by cation and anion exchange chromatography, exhibited its optimal activity at $40^{\circ}C$ and pH 5.5. As for substrate specificity, it was very specific for phytate and showed little activity on other phosphorylated conjugates. Its activity was greatly inhibited by metal ions such as $Cu^{2+}$, $Cd^{2+}$, and $Zn^{2+}$. Addition of corn starch to PSM (phytasesynthetic medium) [0.5% sodium phytate, 0.5% $(NH_4)_2SO_4$, 0.5% KCl, 0.01% $MgSO_4\cdot7H_2O$, 0.01% $CaCl_2\cdot2H_2O$, 0.01% NaCl, 0.001% $FeSO_4\cdot7H_2O$, 0.001% $MnSO_4\cdot4H_2O$; pH 6.5] for the phytase production significantly induced its enzyme activity in comparison with other carbon sources tested.

우사주변 경작지 토양으로부터 세포내 파이테이즈 (phytase) 생산능력이 우수한 Fluorescent Pseudomonas sp. BUN1 세균성 균주를 분리, 동정하였다. 그 균주로부터 유래한 BUN1 파이테이즈 (phytase) 효소를 각각 양이온, 음이온 크로마토그래피 기법을 이용하여 부분정제하여 효소적 특성을 규명한 결과, 각각 $40^{\circ}C$와 pH 5.5에서 최적의 효소활성을 나타내었다. BUN1 파이테이즈 (phytase)는 효소의 기질특이성 측면에서 다른 유기인산화합물에 비해 특히 피틴태인 (phytate)의 분해이용성이 매우 우수한 반면, 구리 ($Cu^{2+}$), 카드뮴 ($Cd^{2+}$), 아연 ($Zn^{2+}$)과 같은 금속 2 가이온에 대하여 그 효소활성이 강하게 억제되었다. 또한 BUN1 균주의 효소생산 배지 (PSM) [0.5% sodium phytate, 0.5% $(NH_4)_2SO_4$, 0.5% KCl, 0.01% $MgSO_4{\cdot}7H_2O$, 0.01% $CaCl_2{\cdot}2H_2O$, 0.01% NaCl, 0.001% $FeSO_4{\cdot}7H_2O$, 0.001% $MnSO_4{\cdot}4H_2O$; pH 6.5]에 탄소원으로서 옥수수전분 (corn starch)의 첨가는 조사된 다른 탄소 배지원에 비하여 현저하게 파이테이즈 (phytase) 생산을 촉진시켰다.

Keywords

References

  1. Bradford, M. M. 1976. A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  2. Casey, A. and Walsh, G. 2003. Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142. Bioresource Technology. 86:183-188. https://doi.org/10.1016/S0960-8524(02)00145-1
  3. Chi, Z., Chi, Z., Zhang, T., Liu, G., Li, J. and Wang, X. 2009. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnology Advances. 27:236-255. https://doi.org/10.1016/j.biotechadv.2009.01.002
  4. Choi, Y. M., Suh, H. J. and Kim, J. M. 2001. Purification and properties of extracellular phytase from Bacillus sp. KHU-10. Journal of Protein Chemistry. 20:287-292. https://doi.org/10.1023/A:1010945416862
  5. Comon, F. H. 1989. Biological availability of phosphorus for pigs. Nature. 143:370-380.
  6. Dvorakova, J., Volfova, O. and Kopecky, J. 1997. Characterization of phytase produced by Aspergillus niger. Folia Microbiology. 42:349-352. https://doi.org/10.1007/BF02816948
  7. Greiner, R., Haller, E., Konietzny, U. and Jany, K. D. 1997. Purification and characterization of a phytase from Klebsiella terrigena. Archives of Biochemistry and Biophysics. 341:201-206. https://doi.org/10.1006/abbi.1997.9942
  8. Greiner, R., Konietzny, U. and Jany, K. D. 1993. Purification and characterization of two phytase from Escherichia coli. Archives of Biochemistry and Biophysics. 303:107-113. https://doi.org/10.1006/abbi.1993.1261
  9. Haefner, S., Knietsch, A., Scholten, E., Braun, J., Lohscheidt, M. and Zelder, O. 2005. Biotechnological production and applications of phytases. Applied Microbiology and Biotechnology. 68:588-597. https://doi.org/10.1007/s00253-005-0005-y
  10. Han, Y. M. and Lei, X. G. 1999. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Archives of Biochemistry and Biophysics. 364:83-90. https://doi.org/10.1006/abbi.1999.1115
  11. Han, Y. M., Wilson, D. B. and Lei, X. G. 1999. Expression of an Aspergillus niger phytase gene (phy A) in Saccharomyces cerevisiae. Applied and Environmental Microbiology. 65:1915-1918.
  12. Heinonen, J. K. and Lahti, R. J. 1980. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Analytical Biochemisry. 113: 313-317.
  13. Huang, H., Shao, N., Wang, Y., Luo, H., Yang, P., Zhou, Z., Zhan, Z. and Yao, B. 2009. A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC2503 with potential as an aquatic feed additive. Applied Microbiology and Biotechnology. Published on line: January 13 (DOI 10.1007/s00253-008-1835-1).
  14. Hussin, A. S. M., Farouk, A. E., Greiner, R., Salleh, H. M. and Ismail, A. F. 2007. Phytate-degrading enzyme production by bacteria isolated from Malaysian soil. World Journal of Microbiology and Biotechnology. 23:1653-1660. https://doi.org/10.1007/s11274-007-9412-9
  15. Ikemoto, S., Katoh, K. and Komagata, K. 1978. Cellular fatty acid composition in methanol-utilizing bacteria. Journal of General and Applied Microbiology. 24:41-49. https://doi.org/10.2323/jgam.24.41
  16. Kerovuo, J., Lappalainen, I. and Reinikainen, T. 2000. The metal dependence of Bacillus subtilis phytase. Biochemistry Biophysics Research Communication. 268: 365-369. https://doi.org/10.1006/bbrc.2000.2131
  17. Kerovuo, J., Lauraeus, M., Nurminen, P., Kakkinen, N. and Apajalahti, J. 1998. Isolation, characterization, Molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Applied and Environmental Microbiology. 64:2079-2085.
  18. Kim, Y. O., Kim, H. K., Bae, K. S., Yu, J. H. and Oh, T. K. 1998. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme and Microbial Technology. 22:2-7. https://doi.org/10.1016/S0141-0229(97)00096-3
  19. King, E. O., Ward, M. K. and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. Journal of Laboratory Clinical Medicine. 44: 301-307.
  20. Lan, G. Q., Abdullah, N., Jalaludin, S. and Ho, Y. W. 2002. Optimization of carbon and nitrogen sources for phytase production by Mitsuokella jalaludinii, a new rumen bacterial species. Letters in Applied Microbiology. 35:157-161. https://doi.org/10.1046/j.1472-765X.2002.01153.x
  21. Liu, B. L., Jong, C. H. and Tzeng, Y. M. 1999. Effect of immobilization on pH and thermal stability of Aspergillus ficuum phytase. Enzyme and Microbial Technology. 25:517-521. https://doi.org/10.1016/S0141-0229(99)00076-9
  22. Oh, B. C., Choi, W. C., Park, S., Kim, Y. O. and Oh, T. K. 2004. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology and Biotechnology. 63:362-372. https://doi.org/10.1007/s00253-003-1345-0
  23. Reddy, N. R., Sathe, S. K. and Salunkhe, D. K. 1982. Phytases in legumes and cereals. Advance in Food Research. 28:1-92.
  24. Richardson, A. E. and Hadobas, P. A. 1997. Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Canadian Journal of Microbiology. 43:509-516. https://doi.org/10.1139/m97-073
  25. Rojas, S. W. and Scott, M. L. 1968. Factors affecting the nutritive value of cottonseed meal as a protein source in chicken diets. Poultry Science. 48:819-835.
  26. Segueilha, L., Lamgrechts, C., Boze, H., Mourin, G. and Galzy, P. 1992. Purification and properties of the phytase from Schwanniomyces castellii. Journal of Fermentation and. Bioengineering. 74:7-11. https://doi.org/10.1016/0922-338X(92)90259-W
  27. Seo, M. J., Kim, J. N., Cho, E. A., Park, H., Choi, H. J. and Pyun, Y. R. 2005. Purification and Characterization of a novel extracellular alkaline phytase from Aeromonas sp. Journal of Microbiology and. Biotechnology. 15:745- 748.
  28. Shieh, T. R. and Ware, J. H. 1968. Survey of microorganisms for the production of extracellular phytase. Applied Microbiology. 16:1348-1351.
  29. Turner, B. L., Richardson, A. E. and Mullaney, E. J. 2007. Inositol phosphates: Linking agriculture and the environment. 1st Ed. CAB International, Oxfordshire, UK.
  30. Ullah, A. H. J., Sethumadhavan, K., Mullaney, E. J., Ziegelhoffer, T. and Austin-Phillips, S. 2002. Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase. Biochemical and Biophysical Research Communications. 290: 1343-1348. https://doi.org/10.1006/bbrc.2002.6361
  31. Wodzinski, R. J. and Ullah, A. H. J. 1996. Phytases. Advanced in Applied Microbiology. 42:263-303. https://doi.org/10.1016/S0065-2164(08)70375-7
  32. Wyss, M., Brugger, R., Kronenberger, A., Remy, R., Fimbel, R., Oesterhelt, G., Lehmann, M. and Van Loon, A. P. 1999. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Applied and Environmental Microbiology. 65:367-373.
  33. Yoon, S. J., Choi, Y. J., Min, H. K., Cho, K. K., Kim, J. W., Lee, S. C. and Jung, Y. H. 1996. Isolation and identification of phytase producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzyme and Microbial Technology. 18:449-454. https://doi.org/10.1016/0141-0229(95)00131-X