DOI QR코드

DOI QR Code

Immuno-specificity of Egg Yolk Antibodies against Bovine Rotavirus and Bovine Coronavirus causing Calf Diarrhea

송아지 설사병 주요원인체인 소로타바이러스와 소코로나바이러스에 대한 난황항체 생산 및 면역특이성 분석

  • Lee, Seong (Department of Animal Resources and Science, Dankook University) ;
  • Woo, Seung-Eun (Institute of Life Science, Danbiotech Ltd.) ;
  • Lee, Sang-Rae (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Jung-Woo (Department of Animal Resources and Science, Dankook University)
  • 이성 (단국대학교 생명자원과학대학 동물자원학과) ;
  • 우승은 ((주)단바이오텍 생명과학연구소) ;
  • 이상래 (한국생명공학연구원 국가영장류센터) ;
  • 김정우 (단국대학교 생명자원과학대학 동물자원학과)
  • Received : 2009.08.19
  • Accepted : 2009.10.16
  • Published : 2009.10.01

Abstract

This study was performed to produce specific egg yolk antibodies against bovine rotavirus (BRV) and bovine coronavirus (BCV) that are major pathogens causing diarrhea in calves. Chickens were immunized with BRV and BCV intramuscularly in the breast muscle by injection 5 times at two weeks interval. At 6 weeks after the first immunization of BRV or BCV, cross reactivity of each serum derived from BRV- or BCV-immunized hens was tested. Each serum antibody against BRV or BCV was reacted with only specific BRV or BCV antigens. Serum and egg yolk-antibody titers of hens against BRV or BCVwere highest at 8~12 weeks after first immunization. Specific serum and egg yolk-antibody titers against BRV were about 104,000 and 107,000, respectively, and those against BCV were about 145,000 and 155,000, respectively. Hemagglutination inhibition titers in the immunized egg yolk antibodies against BRV and BCV were 5,120 and 1,280, respectively, and were ${\geq}8$ times higher than that in non-immunized control. These results suggested that the immunized egg yolk antibodies could effectively neutralize BRV and BCV.

본 연구는 송아지 설사병의 주요원인체 중 소로타바이러스(bovine rotavirus; BRV)와 소코로나바이러스(bovine coronavirus; BCV)에 대한 난황항체를 생산하고 이의 면역 특이성을 확인하고자 실험을 실시하였으며, BRV 및 BCV를 2주 간격으로 5회 산란계에 근육주사를 실시하여 혈청과 난황내의 특이 항체 형성 유무를 확인하였다. 실험 6주차에 면역한 산란계로부터 획득한 혈청을 이용하여 교차반응 시험을 실시한 결과, BRV 및 BCV를 면역하여 얻은 혈청은 각각 BRV 및 BCV 항원과만 특이적인 결합반응을 보였다. 면역에 따른 혈청항체 및 난황항체의 수준은 실험 8~12주차에 최고도에 달했고, BRV에 대한 항체의 경우 혈청과 난황내에서 면역 후 12주째에 각각 약 104,000과 107,000의 역가 수준을 보였으며, BCV의 경우 8주째에 각각 약 145,000과 155,000의 수준을 보였다. BRV 및 BCV에 대한 중화능력 유무 확인을 위하여 분리된 난황항체를 이용하여 혈구응집억제반응 시험을 실시한 결과, BRV 및 BCV에 대한 혈구응집억제 희석비가 각각 5,120 및 1,260으로 면역하지 않은 대조군에 비하여 8배 이상 높은 중화력을 나타냈다. 이러한 결과를 종합하면, 산란계에 BRV 및 BCV를 면역하여 얻어진 난황항체는 BRV 및 BCV에 대한 면역 특이성을 가지고 중화할 수 있는 능력이 있으며, 이러한 난황항체는 BRV 및 BCV의 증식을 효과적으로 억제시킬 수 있어 임상에 적용할 경우 유용할 것으로 사료된다.

Keywords

References

  1. 김정우, 김도균, 김 철. 2000. 장관독성 대장균 K99 (F5)의 섬모항원에 대한 특이 난황항체의 생산. 한국동물자원학과학회지. 42:371-378.
  2. 신나리, 김종만, 유한상. 2000. 난황항체를 이용한 돼지 호흡기 질병 방제에 관한 연구 1. bordetella bronchiseptica, pasteurella multocida 및 actinobacillus pleuropneumoniae의 주요 면역원 분석 및 IgY의 생산. 대한수의학회지. 40(3):551- 561.
  3. 안재문, 강신영. 1998. 소 코로나바이러스에 대한 단클론항체 생산과 특성. 대한수의학회지. 38(3):581-588.
  4. 우승룡, 김종만, 권창희, 이희수, 임숙경, 김종염. 1998. 난황항체를 이용한 돼지 대장균 설사증 방제기법 개발 1. 대장균pilus 항원과 LT로 면역시킨 닭의 면역반응. 대한수의학회지.38(4):829-836.
  5. 이희수, 김종만, 우승룡, 정병열, 조윤상, 유한상, 윤용덕, 허원, 문영식, 오진식. 2004. 난황면역제를 이용한 개 주요 소화기 및 호흡기질병의 방제에 관한 연구 II. 난황면역제의 실험동물과 개에 있어서의 질병방제 효과. 대한수의학회지. 44(3):415-420.
  6. Bertolotti-Ciarlet, A., Ciarlet, M., Crawford, S. E., Conner, M. E. and Estes, M. K. 2003. Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine. 21:3885- 3900. https://doi.org/10.1016/S0264-410X(03)00308-6
  7. Brown, J., Resurreccion, R. S., Dickson, T. G. and Horne, A. 1989. The relationship of egg yolk and serum antibody. I. Infectious bursal disease virus. Avian Dis. 33(4):654-656. https://doi.org/10.2307/1591140
  8. Ciarlet, M., Hyser, J. M. and Estes, M. K. 2002. Sequence analysis of the VP4, VP6, VP7, and NSP4 gene products of the bovine rotavirus WC3. Virus Genes. 24:107-118. https://doi.org/10.1023/A:1014512314545
  9. Ikemori, Y., Ohta, M., Umeda, K., Icatlo, F. C., Kurok, M., Yokoyama, H. and Kodama, Y. 1997. Passive protection of neonatal calves against bovine coronavirus-induced diarrhea by administration of egg yolk or colostrum antibody powder. Vet. Microbiol. 58(2-4):105-111. https://doi.org/10.1016/S0378-1135(97)00144-2
  10. Khattar, S. and Pandey, R. 1990. Cell culture propagation of calf rotavirus and detection of rotavirus specific antibody in colostrum and milk of cows and buffaloes. Rev. Sci. Tech. 9(4):1131-1138. https://doi.org/10.20506/rst.9.4.529
  11. Kim, D. S., Lee, T. J., Kang, J. H., Kim, J. H., Lee, J. H., Ma, S. H., Kim, S. Y., Kim, H. M. and Shin, S. M. 2008. Immunogenicity and safety of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine in healthy infants in Korea. Pediatr. Infect. Dis. J. 27:177-178.
  12. Knecht, W., Kohler, R., Minet, M. and Loffler, M. 1996. Antipeptide immunoglobulins from rabbit and chicken eggs recognize recombinant human dihydroorotate dehydrogenase and a 44-kDa protein from rat liver mitochondria. Eur. J. Biochem. 236:609-613. https://doi.org/10.1111/j.1432-1033.1996.00609.x
  13. Kovacs-Nolan, J. and Mine, Y. 2004. Passive Immunization Through Avian Egg Antibodies. Food Biotechnology. 18(1):39- 62. https://doi.org/10.1081/FBT-120030384
  14. Kuroki, M. 1999. Oral passive immunization using chicken egg yolk immunoglobulins against bovine rotavirus and coronavirus infections. Recent research developments in virology. 1(1):95-106.
  15. Kuroki, M., Ohta, Y., Ikemori, Y., Peralta, R. C., Yokoyama, H. and Kodama, Y. 1994. Passive protection against bovine rotavirus in calves by specific immunoglobulins from chicken egg yolk. Arch. Virol. 138:143-148. https://doi.org/10.1007/BF01310045
  16. Lee, S. H., Lillehoj, H. S., Park, D. W., Jang, S. I., Morales, A., García, D., Lucio, E., Larios, R., Victoria, G., Marrufo, D. and Lillehoj, E. P. 2009. Protective effect of hyperimmune egg yolk IgY antibodies against Eimeria tenella and Eimeria maxima infections. Vet. Parasitol. 163(1-2):123-126. https://doi.org/10.1016/j.vetpar.2009.04.020
  17. Li, X. Y., Jin, L. J., Uzonna, J. E., Li, S. Y., Liu, J. J., Li, H. Q., Lu, Y. N., Zhen, Y. H. and Xu, Y. P. 2009. Chitosan-alginate microcapsules for oral delivery of egg yolk immunoglobulin (IgY): in vivo evaluation in a pig model of enteric colibacillosis. Vet. Immunol. Immunopathol. 129(1-2):132-136. https://doi.org/10.1016/j.vetimm.2008.12.016
  18. Mathew, A. G., Rattanatabtimtong, S., Nyachoti, C. M. and Fang, L. 2009. Effects of in-feed egg yolk antibodies on Salmonella shedding, bacterial antibiotic resistance, and health of pigs. J. Food Prot. 72(2):267-273. https://doi.org/10.4315/0362-028X-72.2.267
  19. Park, J. S., Choi, B. K., Vijayachandran, L. S., Ayyappan, V., Chong, C. K., Lee, K. S., Kim, S. C. and Choi, C. W. 2007. Immunodetection of Canine Parvovirus (CPV) in clinical samples by polyclonal antisera against CPV-VP2 protein expressed in Esherichia coli as an antigen. J. Virol. Methods. 146(1-2):281-287. https://doi.org/10.1016/j.jviromet.2007.07.021
  20. Silim, A. and Venne, D. 1989. Comparison of egg-yolk and serum antibody titers to four avian viruses by enzyme-linked immunosorbent assay using paired field samples. Avian Dis. 33(4):643-648. https://doi.org/10.2307/1591138
  21. Svendsen, B. L., Crowley, A., Stodulski, G. and Hau, J. 1996. Antibody production in rabbits and chickens immunized with human IgG. A comparison of titre and avidity development in rabbit serum, chicken serum and egg yolk using three different adjuvants. J. Immunol. Methods. 191(2):113‐120. https://doi.org/10.1016/0022-1759(96)00010-5
  22. Yang, D. K., Kim, B. H., Lee, K. W., Kim, Y. H., Song, J. Y., Park, J. W. and Son, S. W. 2008. Genetic characterization of bovine rotavirus isolates in Korea. Korean J. Vet. Res. 48(4):423-429.