Abstract
In this paper, we propose a distributed model that recognize ADLs of human can be occurred in daily living places. We collect and analyze user's environmental, location or activity information by simple sensor attached home devices or utensils. Based on these information, we provide a lifecare services by inferring the user's life pattern and health condition. But in order to provide a lifecare services well-refined activity recognition data are required and without enough inferred information it is very hard to build an ADL activity recognition model for high-level situation awareness. The sequence that generated by sensors are very helpful to infer the activities so we utilize the sequence to analyze an activity pattern and propose a distributed linear time inference algorithm. This algorithm is appropriate to recognize activities in small area like home, office or hospital. For performance evaluation, we test with an open data from MIT Media Lab and the recognition result shows over 75% accuracy.
본 논문에서는 일상 공간에서 발생할 수 있는 인간의 일상생활 행위(ADL: Activities of Daily Living)들을 인지하는 분산 모델을 제시한다. 사용자의 환경, 위치 및 행위 정보를 간단한 센서들이 부착된 가정용 기기 혹은 식기들을 통해 무선 센서 네트워크로 수집하며 분석하고, 이 정보를 기반으로 사용자의 생환패턴, 건강상태 등을 파악하여 이에 요구되는 라이프케어 서비스를 제공한다. 하지만 서비스의 제공을 위해서는 높은 수준의 행위인지 데이터가 요구되나 충분히 분석되어지지 않은 센싱 데이터들은 고차원 상창 추론을 위한 일상생활 행위 인지 모델의 구축을 어렵게 한다. 그러나 수집 데이터의 순서를 통해 행위를 인지할 수 있다는 것에 착안하여 센서 데이터들의 순서를 특정 행위 패턴을 분석하는 데 활용하고, 이를 기반으로 한 분산 선형 시간추론 알고리즘을 제안한다. 이 알고리즘은 가정, 사무실 및 병원과 같은 소규모 환경에서 행위를 인지하는 데 적절하다. 제안한 알고리즘의 성능평가를 위해서 MIT Media Lab에서 제공하는 공개 데이터를 사용하였으며, 75% 이상의 평균 행위 인지 정확도를 보였다.