References
- R. D. Wood and O. C. Zienkiewicz, Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells, Computers and Structures 7, 725–735 (1977) https://doi.org/10.1016/0045-7949(77)90027-X
- K. J. Bathe, E. Ramm and E. L. Wilson, Finite element formulations for large deformation dynamic analysis, Intl. J. Numer. Methods Engng 9, 353–386 (1975) https://doi.org/10.1002/nme.1620090207
- S. Ilanko and S.M. Dickinson, The vibration and post-buckling of geometrically imperfect, simply supported, rectangular plates under uni-axial loading, Part I: Theoretical approach, J. Sound Vibr. 118, 313–336 (1987) https://doi.org/10.1016/0022-460X(87)90529-3
- A. N. Palazotto and P. E. Linnemann, Vibration and buckling characteristics of composite cylindrical panels incorporating the effects of a higher order shear theory, Intl. J. Solids Struct. 28, 341–361 (1991) https://doi.org/10.1016/0020-7683(91)90198-O
- M. A. Souza, Vibration of thin-walled structures with asymmetric post-buckling characteristics, Thin-Walled Structures 14, 45–57 (1992) https://doi.org/10.1016/0263-8231(92)90054-Z
- D. Lee and I. Lee, Vibration behaviors of thermally post-buckled anisotropic plates using firstorder shear deformable plate theory, Compos. Struct. 63, 371–378 (1997) https://doi.org/10.1016/S0045-7949(96)00378-1
- I. K. Oh, J. H. Han and I. Lee, Post-buckling and vibration characteristics of piezolaminated composite plate subject to thermopiezoelectric loads, J. Sound Vibr. 233, 19–40 (2000)
- H. Chen and W. Yu, Post-buckling and mode jumping analysis of composite laminates using an asymptotically correct, geometrically non-linear theory, Intl. J. Non-Linear Mech. 41, 1143–1160 (2006) https://doi.org/10.1016/j.ijnonlinmec.2006.11.004
- J. G. Teng and T. Hong, Nonlinear thin shell theories for numerical buckling predictions, Thin-Walled Structures 31, 89–115 (1998) https://doi.org/10.1016/S0263-8231(98)00014-7
- C. K. Kundu and P. K. Sinha, Post-buckling analysis of laminated composite shells, Compos. Struct. 78, 316–324 (2007) https://doi.org/10.1016/j.compstruct.2005.10.005
- A. K. Jha and D. J. Inman, Importance of geometric nonlinearity and follower pressure load in the dynamic analysis of a gossamer structure, J. Sound Vibr. 278, 207–231 (2004) https://doi.org/10.1016/j.jsv.2003.10.026
- M. A. Crisfield, A fast incremental iterative solution procedure that handles snap through, Computers and Structures 13, 55–62 (1981) https://doi.org/10.1016/0045-7949(81)90108-5
- H. Kraus, Thin Elastic Shells. John Wiley and Sons, New York, USA (1967)
- A. S. Saada, Elasticity: Theory and Applications. Pergamon Press, New York, USA (1974)
- R. Jones, Mechanics of Composite Materials. Taylor and Francis, Philadelphia, USA (1999)
- O. C. Zienkiewicz and R. L. Taylor, The Finite ElementMethod, Vol. 1.McGraw Hill International Edition, Singapore (1989)
- A. B. Sabir and M. S. Djoudi, Shallow shell finite element for the large deformation geometrically nonlinear analysis of shells and plates, Thin-Walled Structures 21, 253–267 (1995)
- K. Kim and G. Z. Voyiadjis, Nonlinear finite element analysis of composite panels, Composites:Part B 30, 365–381 (1999) https://doi.org/10.1016/S1359-8368(99)00007-4
- S. Saigal, R. K. Kapania and T. Y. Yang, Geometrically nonlinear finite element analysis of imperfect laminated shells, J. Compos. Mater. 20, 197–214 (1986) https://doi.org/10.1177/002199838602000206
- A. K. Noor, Free vibrations of multilayered composite plates, AIAA Journal 7, 1038–1039 (1973)
- K. Chandrashekhara, Free vibration of anisotropic laminated doubly curved shells, Computers and Structures 33, 435–440 (1989) https://doi.org/10.1016/0045-7949(89)90015-1