DOI QR코드

DOI QR Code

Characterization of Nonlinear Behaviors of CSCNT/Carbon Fiber-Reinforced Epoxy Laminates

  • Received : 2007.03.19
  • Accepted : 2008.08.08
  • Published : 2009.09.01

Abstract

Nonlinear mechanical behaviors of unidirectional carbon fiber-reinforced plastic (CFRP) laminates using cup-stacked carbon nanotubes (CSCNTs) dispersed epoxy are evaluated and compared with those of CFRP laminates without CSCNTs. Off-axis compression tests are performed to obtain the stress-strain relations. One-parameter plasticity model is applied to characterize the nonlinear response of unidirectional laminates, and nonlinear behaviors of laminates with and without CSCNTs are compared. Clear improvement in stiffness of off-axis specimens by using CSCNTs is demonstrated, which is considered to contribute the enhancement of the longitudinal compressive strength of unidirectional laminates and compressive strength of multidirectional laminates. Finally, longitudinal compressive strengths are predicted based on a kink band model including the nonlinear responses in order to demonstrate the improvement in longitudinal strength of CFRP by dispersing CSCNTs.

Keywords

References

  1. L. S. Schadler, Polymer-based and polymer-filled nanocomposites, in: Nanocomposite Science and Technology, P. M. Ajayan, L. S. Schadler and P. V. Braun (Eds), pp. 77–153. Wiley-VCH, Weinheim, Germany (2003)
  2. W. Liu, S. V. Hoa and M. Pugh, Fracture toughness and water uptake of high-performance epoxy/nanoclay nanocomposites, Compos. Sci. Technol. 65, 2364–2373 (2005)
  3. D. M. Delozier, K. A. Watson, J. G. Smith and J. W. Connell, Preparation and characterization of space durable polymer nanocomposite films, Compos. Sci. Technol. 65, 749–755 (2005)
  4. J. K. Kim, C. Hu, R. S. C. Woo and M.-L. Sham, Moisture barrier characteristics of organoclayepoxy nanocomposites, Compos. Sci. Technol. 65, 805–813 (2005)
  5. B.-K. Zhu, S.-H. Xie, Z.-K. Xu and Y.-Y. Xu, Preparation and properties of polyimide/multiwalled carbon nanotubes (MWCTs) nanocomposites, Compos. Sci. Technol. 66, 548–554 (2006)
  6. T. Ogasawara, Y. Ishida, T. Ishikawa, T. Aoki and T. Ogura, Helium gas permeability of montmorillonite/epoxy nanocomposites, Composites Part A 37, 2236–2240 (2006)
  7. E. T. Thostenson, Z. Reng and T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol. 61, 1899–1912 (2001)
  8. Y. Kojima, A. Usuki, M. Kawasaki, A. Okada, Y. Fukushima, T. Kurauchi and O. Kamigaito, Mechanical properties of nylon 6-clay hybrid, J. Mater. Res. 8, 1185–1189 (1993)
  9. F. H. Gojny, M. H. G. Wichmann, B. Fiedler and K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study, Compos. Sci. Technol. 65, 2300–2313 (2005)
  10. K. Wang, L. Chen, J. Wu, M. L. Toh, C. He and A. F. Yee, Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms, Macromolecules 38, 788–800 (2005)
  11. B. W. Rosen, Mechanics of composite strengthening, in: Fiber Composite Materials, pp. 37–75. American Society of Metals, Metals Park, Ohio, USA (1965)
  12. A. Argon, Fracture of composites, in: Treatise on Materials Science and Technology, H. Herman (Ed.), Vol. 1, pp. 79–114. Academic Press, New York, USA (1972)
  13. A. K. Subramaniyan and C. T. Sun, Enhancing compressive strength of unidirectional polymeric composites using nanoclay, Composites Part A 37, 2257–2268 (2006)
  14. M. Endo, Y. A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones, T. Yanagisawa, S. Higaki and M. S. Dresselhaus, Structural characterization of cup-stacked-type nanofibers with an entirely hollow core, Appl. Phys. Lett. 80, 1267–1269 (2002)
  15. Y. Iwahori, S. Ishiwata, T. Sumizawa and T. Ishikawa, Mechanical properties improvements in two-phase and three-phase composites using carbon nano-fiber dispersed resin, Composites Part A 36, 1430–1439 (2005)
  16. Y.-K. Choi, Y. Gotoh, K. Sugimoto, S. M. Song, T. Yanagisawa and M. Endo, Processing and characterization of epoxy nanocomposites reinforced by cup-stacked carbon nanotubes, Polymer 46, 11489–11498 (2005)
  17. T. Yokozeki, Y. Iwahori and S. Ishiwata, Matrix cracking behaviors in carbon fiber/epoxy laminates filled with cup-stacked carbon nanotubes (CSCNTs), Composites Part A 38, 917–924 (2007)
  18. T. Yokozeki, Y. Iwahori, S. Ishiwata and K. Enomoto, Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy, Composites Part A 38, 2121–2130 (2007)
  19. C. T. Sun and J. L. Chen, A simple flow rule for characterizing nonlinear behavior of fiber composites, J. Compos. Mater. 23, 1009–1020 (1989)
  20. T. Yokozeki, T. Ogasawara and T. Ishikawa, Effects of fiber nonlinear properties on the compressive strength prediction of unidirectional carbon-fiber composites, Compos. Sci. Technol. 65, 2140–2147 (2005)
  21. C. T. Sun and I. Chung, An oblique end-tab design for testing off-axis composite specimens, Composites 24, 619–623 (1993)
  22. M. Kawai, M. Morishita, H. Satoh and S. Tomura, Effects of end-tab shape on strain field of unidirectional carbon/epoxy composite specimens subjected to off-axis tension, Composites Part A 28, 267–275 (1997)
  23. S. Ogihara, S. Kobayashi and K. L. Reifnider, Characterization of nonlinear behavior of carbon/epoxy unidirectional and angle-ply laminates, Adv. Compos. Mater. 11, 239–254 (2003)
  24. B. Budiansky and N. A. Fleck, Compressive failure of fibre composites, J. Mech. Phys. Solids 41, 183–211 (1993)
  25. C. R. Schultheisz and A. M. Waas, Compressive failure of composites, part I: testing and micromechanical theories, Prog. Aerospace Sci. 32, 1–42 (1996)
  26. P. Berbinau, C. Soutis and I. A. Guz, Compressive failure of 0$^{\circ}$ unidirectional CFRP laminates by fibre microbuckling, Compos. Sci. Technol. 59, 1451–1455 (1999)