DOI QR코드

DOI QR Code

The Analysis of Predictive Factors for the Identification of Patients Who Could Benefit from Respiratory-Gated Radiotherapy in Non-Small Cell Lung Cancer

비소세포성 폐암에서 호흡동기방사선치료 적용 환자군의 선택을 위한 예측인자들의 분석

  • Jang, Seong-Soon (Departments of Radiation Oncology, The Catholic University of Korea College of Medicine) ;
  • Park, Ji-Chan (Departments of Internal Medicine, The Catholic University of Korea College of Medicine)
  • 장성순 (가톨릭대학교 의과대학 방사선종양학교실) ;
  • 박지찬 (가톨릭대학교 의과대학 내과학교실)
  • Received : 2009.08.03
  • Accepted : 2009.11.12
  • Published : 2009.12.31

Abstract

Purpose: 4DCT scans performed for radiotherapy were retrospectively analyzed to assess the possible benefits of respiratory gating in non-small cell lung cancer (NSCLC) and established the predictive factors for identifying patients who could benefit from this approach. Materials and Methods: Three treatment planning was performed for 15 patients with stage I~III NSCLC using different planning target volumes (PTVs) as follows: 1) PTVroutine, derived from the addition of conventional uniform margins to gross tumor volume (GTV) of a single bin, 2) PTVall phases (patient-specific PTV), derived from the composite GTV of all 6 bins of the 4DCT, and 3) PTVgating, derived from the composite GTV of 3 consecutive bins at end-exhalation. Results: The reductions in PTV were 43.2% and 9.5%, respectively, for the PTVall phases vs. PTVroutine and PTVgating vs. PTVall phases. Compared to PTVroutine, the use of PTVall phases and PTVgating reduced the mean lung dose (MLD) by 18.1% and 21.6%, and $V_{20}$ by 18.2% and 22.0%, respectively. Significant correlations were seen between certain predictive factors selected from the tumor mobility and volume analysis, such as the 3D mobility vector, the reduction in 3D mobility and PTV with gating, and the ratio of GTV overlap between 2 extreme bins and additional reductions in both MLD and $V_{20}$ with gating. Conclusion: The additional benefits with gating compared to the use of patient-specific PTV were modest; however, there were distinct correlations and differences according to the predictive factors. Therefore, these predictive factors might be useful for identifying patients who could benefit from respiratory-gated radiotherapy.

목 적: 비소세포성 폐암에서 호흡동기방사선치료의 이득을 평가하고 이런 치료법의 적용으로 이득이 있을 환자들을 선택하기 위한 예측인자들을 선정하기 위하여 방사선치료를 위해 시행되었던 4-dimensional computed tomography (4DCT) 영상들을 후향적으로 분석하였다. 대상 및 방법: 15명의 병기 1~3기 비소세포성 폐암 환자들에서 3 종류의 다른 계획용표적체적(PTV)을 사용하여 치료계획들이 수립되었다. 즉 PTVroutine은 동기창(gating window)의 중심에 해당되는 단일 bin의 육안적종양체적(GTV)에 통상적인 균일 margin을 적용해 구성하였고 환자 특이적인 PTVall phases는 호흡주기 내 모든 6 bins의 복합 GTV로부터 구성되었다. 그리고 호흡동기치료에 사용된 PTVgating은 호기말단(end-exhalation)에서 3 연속적인 bins의 복합 GTV로부터 구성되었다. 결 과: PTVroutine에 비해 PTVall phases는 43.2%의 PTV 감소율을 나타냈고, PTVgating은 PTVall phases와 비교해서 9.5%의 추가적인 PTV 감소율을 보였다. PTVroutine과 비교해서 PTVall phases와 PTVgating의 사용은 평균폐선량(MLD)을 각각 18.1%와 21.6% 감소시켰고 $V_{20}$은 각각 18.2%와 22.0% 감소되었다. 종양 움직임과 용적 분석들을 통해 선택된 3D 움직임벡터, 호흡동기로 인한 3D 움직임의 감소크기와 PTV 감소율, 그리고 두 극단의 호흡단계 GTV들 간에 서로 중복되는 용적의 비율 같은 예측인자들은 호흡동기로 인한 추가적인 MLD, $V_{20}$ 감소율들과 유의한 상관성을 보였다. 결 론: 4DCT를 이용한 환자 특이적 PTV의 사용과 비교해서 호흡동기로 인한 추가적인 이득은 크지 않았으나, 이러한 이득은 예측인자들에 따라 분명한 상관성과 차이를 보였다. 이런 예측인자들은 호흡동기방사선치료에 적합한 환자들을 선택하기 위해 유용할 것이다.

Keywords

References

  1. Jiang SB. Radiotherapy of mobile tumors. Semin Radiat Oncol 2006;16:239-248 https://doi.org/10.1016/j.semradonc.2006.04.007
  2. Bortfeld T, Jiang SB, Rietzel E. Effects of motion on the total dose distribution. Semin Radiat Oncol 2004;14:41-51 https://doi.org/10.1053/j.semradonc.2003.10.011
  3. Li XA, Stepaniak C, Gore E. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system. Med Phys 2006;33:145-154 https://doi.org/10.1118/1.2147743
  4. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 2006;33:3874-3900
  5. Stevens CW, Munden RF, Forster KM, et al. Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function. Int J Radiat Oncol Biol Phys 2001;51:62-68
  6. Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 2002;53:822-834 https://doi.org/10.1016/S0360-3016(02)02803-1
  7. van Sornsen de Koste JR, Lagerwaard FJ, Nijssen-Visser MR, Graveland WJ, Senan S. Tumor location cannot predict the mobility of lung tumors: a 3D analysis of data generated from multiple CT scans. Int J Radiat Oncol Biol Phys 2003;56:348-354 https://doi.org/10.1016/S0360-3016(02)04467-X
  8. Onimaru R, Shirato H, Fujino M, et al. The effect of tumor location and respiratory function on tumor movement estimated by real-time tracking radiotherapy (RTRT) system. Int J Radiat Oncol Biol Phys 2005;63:164-169 https://doi.org/10.1016/j.ijrobp.2005.01.025
  9. Keall P. 4-dimensional computed tomography imaging and treatment planning. Semin Radiat Oncol 2004;14:81-90 https://doi.org/10.1053/j.semradonc.2003.10.006
  10. Rietzel E, Pan T, Chen GT. Four-dimensional computed tomography: image formation and clinical protocol. Med Phys 2005;32:874-889 https://doi.org/10.1118/1.1869852
  11. Mageras GS, Yorke E. Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment. Semin Radiat Oncol 2004;14:65-75 https://doi.org/10.1053/j.semradonc.2003.10.009
  12. Underberg RW, Lagerwaard FJ, Slotman BJ, Cuijpers JP, Senan S. Benefit of respiration-gated stereotactic radiotherapy for stage I lung cancer: an analysis of 4DCT datasets. Int J Radiat Oncol Biol Phys 2005;62:554-560 https://doi.org/10.1016/j.ijrobp.2005.01.032
  13. Underberg RW, van Sornsen de Koste JR, Lagerwaard FJ, Vincent A, Slotman BJ, Senan S. A dosimetric analysis of respiration-gated radiotherapy in patients with stage III lung cancer. Radiat Oncol 2006;1:8 https://doi.org/10.1186/1748-717X-1-8
  14. Wu J, Li H, Shekhar R, Suntharalingam M, D'Souza W. An evaluation of planning techniques for stereotactic body radiation therapy in lung tumors. Radiother Oncol 2008;87:35-43 https://doi.org/10.1016/j.radonc.2008.02.010
  15. Rietzel E, Liu AK, Doppke KP, et al. Design of 4D treatment planning target volumes. Int J Radiat Oncol Biol Phys 2006;66:287-295 https://doi.org/10.1016/j.ijrobp.2006.05.024
  16. Guckenberger M, Weininger M, Wilbert J, et al. Influence of retrospective sorting on image quality in respiratory correlated computed tomography. Radiother Oncol 2007;85:223-231 https://doi.org/10.1016/j.radonc.2007.08.002
  17. Kleshneva T, Muzik J, Alber M. An algorithm for automatic determination of the respiratory phases in fourdimensional computed tomography. Phys Med Biol 2006;51:N269-276 https://doi.org/10.1088/0031-9155/51/16/N01
  18. Liu HH, Balter P, Tutt T, et al. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys 2007;68:531-540 https://doi.org/10.1016/j.ijrobp.2006.12.066
  19. Graham MV, Purdy JA, Emami B, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 1999;45:323-329
  20. Burnett SS, Sixel KE, Cheung PC, Hoisak JD. A study of tumor motion management in the conformal radiotherapy of lung cancer. Radiother Oncol 2008;86:77-85 https://doi.org/10.1016/j.radonc.2007.11.017
  21. van Sornsen de Koste JR, Lagerwaard FJ, Schuchhard-Schipper RH, et al. Dosimetric consequences of tumor mobility in radiotherapy of stage I non-small cell lung cancer: an analysis of data generated using 'slow' CT scans. Radiother Oncol 2001;61:93-99 https://doi.org/10.1016/S0167-8140(01)00373-5
  22. Allen AM, Siracuse KM, Hayman JA, Balter JM. Evaluation of the influence of breathing on the movement and modeling of lung tumors. Int J Radiat Oncol Biol Phys 2004; 58:1251-1257 https://doi.org/10.1016/j.ijrobp.2003.09.081
  23. Underberg RW, Lagerwaard FJ, Cuijpers JP, Slotman BJ, van Sornsen de Koste JR, Senan S. Fourdimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer. Int J Radiat Oncol Biol Phys 2004;60:1283-1290 https://doi.org/10.1016/j.ijrobp.2004.07.665
  24. Slotman BJ, Lagerwaard FJ, Senan S. 4D imaging for target definition in stereotactic radiotherapy for lung cancer. Acta Oncol 2006;45:966-972 https://doi.org/10.1080/02841860600902817
  25. Underberg RW, Lagerwaard FJ, Slotman BJ, Cuijpers JP, Senan S. Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. Int J Radiat Oncol Biol Phys 2005;63:253-260 https://doi.org/10.1016/j.ijrobp.2005.05.045
  26. Starkschall G, Forster KM, Kitamura K, Cardenas A, Tucker SL, Stevens CW. Correlation of gross tumor volume excursion with potential benefits of respiratory gating. Int J Radiat Oncol Biol Phys 2004;60:1291-1297 https://doi.org/10.1016/j.ijrobp.2004.07.707
  27. Shin E, Park HC, Han Y, Ju SG, Shin JS, Ahn YC. Efficacy of a respiratory training system on the regularity of breathing. J Korean Soc Ther Radiol Oncol 2008;26:181-188 https://doi.org/10.3857/jkstro.2008.26.3.181
  28. George R, Chung TD, Vedam SS, et al. Audio-visual biofeedback for respiratory-gated radiotherapy: impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy. Int J Radiat Oncol Biol Phys 2006;65:924-933 https://doi.org/10.1016/j.ijrobp.2006.02.035
  29. Jiang SB. Technical aspects of image-guided respirationgated radiation therapy. Med Dosim 2006;31:141-151 https://doi.org/10.1016/j.meddos.2005.12.005
  30. Hara R, Itami J, Kondo T, et al. Clinical outcomes of single-fraction stereotactic radiation therapy of lung tumors. Cancer 2006;106:1347-1352 https://doi.org/10.1002/cncr.21747
  31. Salazar OM, Sandhu TS, Lattin PB, et al. Once-weekly, high-dose stereotactic body radiotherapy for lung cancer: 6-year analysis of 60 early-stage, 42 locally advanced, and 7 metastatic lung cancers. Int J Radiat Oncol Biol Phys 2008;72:707-715 https://doi.org/10.1016/j.ijrobp.2008.01.054
  32. Bradley J. A review of radiation dose escalation trials for non-small cell lung cancer within the Radiation Therapy Oncology Group. Semin Oncol 2005;32(2 Suppl. 3):S111-S113 https://doi.org/10.1053/j.seminoncol.2005.03.020