DOI QR코드

DOI QR Code

In Vitro Anticancer and Antioxidant Effect of Solvent Extracts from Tuna Dried at Low Temperature Vacuum.

저온진공건조 참치추출물의 in vitro 항암 및 항산화 효과

  • Jang, Joo-Ri (Division of Marine Environment & Bioscience, Korea Maritime University) ;
  • Kim, Kyung-Kun (Division of Marine System Engineering Korea Maritime University) ;
  • Mun, Soo-Beom (Division of Marine System Engineering Korea Maritime University) ;
  • Lim, Sun-Young (Division of Marine Environment & Bioscience, Korea Maritime University)
  • 장주리 (한국해양대학교 해양환경생명과학부) ;
  • 김경근 (한국해양대학교 기관시스템공학부) ;
  • 문수범 (한국해양대학교 기관시스템공학부) ;
  • 임선영 (한국해양대학교 해양환경생명과학부)
  • Published : 2009.05.30

Abstract

We investigated the inhibitory effects of solvent extracts from dried tuna on the growth of cancer cell lines (HT1080 human fibrosarcoma and HT-29 human colon cancer cells) and $H_2O_2$-induced oxidative stress. Inhibitory effects of acetone with methylene chloride (A+M) and methanol (MeOH) extracts on the growth of HT1080 and HT-29 cancer cells increased in a dose dependent manner (p<0.05). The inhibitory effect was more significant on the growth of HT1080 cells, and A+M extracts had a higher inhibitory effect compared to MeOH extracts. The treatments of hexane, 85% aq. methanol, butanol and water fractions significantly inhibited the growth of both cancer cells (p<0.05). Among the fractions, hexane and 85% aq. methanol fractions showed higher inhibitory effects. In order to determine the protective effect on $H_2O_2$-induced oxidative stress, a DCHF-DA (dichlorodihydrofluorescin diacetate) assay was conducted. All fractions, including crude extracts of dried tuna, appeared to significantly reduce the levels of intracellular reactive oxygen species (ROS) with dose responses (p<0.05). Among the fractions, BuOH and 85% methanol fractions showed a higher protective effect on the production of lipid peroxides. These results indicate that the consumption of tuna may be recommended as a potent functional food for preventing cellular oxidation and cancer.

저온 진공 공정으로 건조된 참치를 유기용매로 추출하여 이들 참치 추출물 및 분획물들에 의한 인체 결장암 및 섬유육종세포에 대한 증식 및 세포 내 활성산소종 억제 효과에 대해 검토하였다. 건조 참치의 A+M 추출물과 MeOH 추출물을 0.5, 1, 및 5 mg/ml의 농도로 인체 섬유육종세포(HT1080)에 처리했을 때 농도 의존적으로 인체 암세포 증식을 억제시켰으며(p<0.05), 특히 A+M 추출물이 MeOH 추출물에 비하여 그 억제효과가 우수하였다. 건조 참치 추출물로부터 얻어진 분획물들의 경우 특히 hexane과 85% aq. MeOH 분획물들에 의한 암세포 증식 억제효과가 높았다. 인체 결장암세포(HT-29)에 대한 결과로 A+M 추출물은 인체 섬유육종세포(HT1080)의 결과와 비교했을 때 다소 암세포 증식 억제 효과가 낮았으나 5 mg/ml의 첨가농도에서 95%로 암세포 증식 억제효과를 보였고(p<0.05), MeOH 추출물도 앞서 A+M 추출물 결과와 유사하게 인체 섬유육종세포(HT1080)에 비해 낮은 암세포 성장 억제효과를 보였지만, 첨가농도 5 mg/ml에서는 93%로 높은 암세포 증식 억제효과를 나타내었다(p<0.05). 건조 참치 분획물들의 경우도 앞서의 인체 섬유육종세포(HT1080)와 유사하게 모든 분획물들에서 농도 의존적으로 억제효과가 높은 것을 살펴 볼 수가 있었고, 인체 결장암세포(HT-29)에서도 hexane과 85% aq. MeOH 분획물에 의한 항암효과가 우수하였다. In vitro 항산화실험에서 건조 참치 A+M 추출물 및 MeOH 추출물을 농도별로 인체 섬유육종세포(HT1080)에 처리하였을 때 A+M 추출물(10 mg/ml 농도)를 제외하고 측정기간 120분 동안 모든 추출물들이 blank군과 control군에 비해 세포 내 활성산소종을 크게 감소시켰다. 건조 참치 분획물들 중 BuOH 및 85% aq. MeOH 분획물들은 세포내 활성산소종을 크게 감소시키는 우수한 항산화 효과를 나타내었다.

Keywords

References

  1. Albert, C. M., H. Campos, M. J. Stampfer, P. M. Ridker, J. E. Manson, W. C. Willett, and J. Ma. 2002. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N. Engl. J. Med. 346, 1113-1118 https://doi.org/10.1056/NEJMoa012918
  2. Carroll, K. K. 1990. Experimental and epidemiological evidence on marine lipids and carcinogenesis. pp. 99, In Omega-3 Fatty Acids in Health and Disease. Lees, R. S. and Barrel, M. (eds.), ., New York, USA.
  3. Chaudry, A., S. McClinton, L. E. F. Moffat, and K. W. J. Wahle. 1991. Essential fatty acid distribution in plasma and tissue phospholipids of patients withbenign and malignantprostate disease. Br. J. Cancer. 64, 1157-1160 https://doi.org/10.1038/bjc.1991.481
  4. Denizot, F. and R. Lang. 1986. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliablity. J. Immunol. Methods. 89, 271-277 https://doi.org/10.1016/0022-1759(86)90368-6
  5. Froyland, L., H. Vaagenes, D. K. Asiedu, A. Garras, O. Lie, and R. K. Berge. 1996. Chronic administration of eicosapentaenoic acid and docosahexaenoic acid as ethyl esters reduced plasma cholesterol and changed the fatty acid composition in rat blood and organs. Lipids. 31, 169-178 https://doi.org/10.1007/BF02522617
  6. Hwang, W. I., N. G. Baik, Y. K. Hwang, and S. D. Lee. 1992. Antitumor and immunological effects of tuna extract. J. Korean Soc. Food Nutr. 21, 353-366
  7. Hwang, W. I., Y. H. Ji, M. J. Woo, and J. Y. Lee. 1994. Effects of tuna DHA on the growth of cancer cells, In Vitro. Korean J. Nutr. 7, 655-662
  8. Jang, J. R., H. J. Choi, K. K. Kim, and S. Y. Lim. 2008. Effect of extracts from dried mackerel on antioxidant activity and inhibition of growth of human cancer cell lines. J. Life Sci. 18, 680-685
  9. Kamali, R. A., J. Marsh, and C. Fuchs. 1984. Effect of n-3 FA on growth of a rat mammary tumors. J. Natl. Cancer Inst. 73, 457-46
  10. Kim, S., S. Kang, and H. Choi. 2005. Effects of Dietary levels of corn and tuna oils on the formation of preneoplastic lesions in rat hepatocellular carcinogenesis. Kor. J. Nutr. 38, 20-29
  11. Kromhout, D. M., E. B. Bosschieter, and C. Coulander. 1985. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. New Engl. J. Med. 312, 1205-1209 https://doi.org/10.1056/NEJM198505093121901
  12. LeBel, C. P., H. Ischiropoulos, and S. C. Bondy. 1992. Evaluation of the probe 2', 7'-Dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5, 227-231 https://doi.org/10.1021/tx00026a012
  13. Lee, H. S., H. J. Kim, J. I. Choi, J. H. Kim, J. G. Kim, B. S. Chun, D. H. Ahn, Y. J. Chung, Y. J. Kim, M. W. Byun, and J. W. Lee. 2008. Antioxidant activity of the ethanol extract from cooking drips of Thunnus thynnus by gamma irradiation. J. Kor. Soc. Food Sci. Nutr. 37, 810-814 https://doi.org/10.3746/jkfn.2008.37.6.810
  14. Medina, I., S. P. Auboug, and R. P. Martin. 1995. Composition of phospholipids of white muscle of six tuna species. Lipids 30, 1127-1135 https://doi.org/10.1007/BF02536613
  15. Murase, T. and H. Saito. 1996. The docosahexaenoic acid content in the lipid of albacore Thunnus alalunga caught in the two separate localities. Fish Sci. 62, 634-638
  16. Nordoy, A., L. F. Hatcher, D. L. Ullmann, and W. E. Connor. 1993. Individual effects of dietary saturated fatty acids and fish oil on plasma lipids and lipoproteins in normal men. Am. J. Clin. Nutr. 57, 634-639
  17. Reddy, B. S. and S. Sugie. 1988. Effect of different levels of omega-3 and omega-6 fatty acids on azoxymethaneinduced colon carcinogenesis in F344 rats. Cancer Res. 48, 6642-6647
  18. Ruxton, C. H., S. C. Reed, M. J. A. Simpson, and K. J. Millington. 2004. The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J. Hum. Nutr. Diet. 17, 449-459 https://doi.org/10.1111/j.1365-277X.2004.00552.x
  19. Saito, H. and K. Nakamura. 1990. Antioxidative effect of sesamol on fish oil oxidation. Nippon Suisan Gakkaishi. 56, 1893
  20. Saito, H., I. Saito, K. J. Chang, Y. Tamura, and S. Yoshida. 1991. Effect of ingestion of eicosapentaenoic acid ethyl- ester on the scavenger activity for acetylated LDL and the production of platelet-derived growth factor in rat peritoneal macrophages. Adv. Prostaglandin Thromboxane Leukot. Res. 21, 241-244
  21. Sasagawa, T., K. Kosai, Y. Ota, M. Mori, and M. Okita. 2002. Influences of a dietary fatty acid composition on the emergence of glutathione S-transterase-P (GST-P) positive foci in the liver of carcinogen treated rats. Prostaglandins Leukot. Essent. Fatty Acids 67, 327-332 https://doi.org/10.1054/plef.2002.0437
  22. Shin, M. O., M. J. Ku, and S. J. Bae. 2007. Cytotoxicity and Quinone Reductase activity stimulating effects of fin of Thunnus Thynnus extracts in various cancer cells. Korean J. Nutr. 40, 147-153
  23. Simopoppulos, A. P. 1991. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54, 438-463
  24. Son, J. Y., J. H. Rhim, and H. S. Son. 1995. Effect of some synthetic and natural antioxidants on the oxidative stability of skip jack oil. Kor. J. Food Nutr. 8, 88-92
  25. Takahashi, M., T. Minamoto, N. Yamashita, K. Yazawa, T. Sugimura, and H. Esumi. 1993. Reduction in formation and growth of 1,2-dimethylhydrazine-induced aberrant crypt foci in rat colon by docosahexaenoic acid. Cancer Res. 53, 2786-2789 https://doi.org/10.1016/0304-3835(95)03788-X
  26. Tsuchiya, M., M. Suematsu, and H. Suzuki. 1994. In Vivo visualization of oxygen radical-dependent photoemission. Methods Enzymol. 233, 128-140 https://doi.org/10.1016/S0076-6879(94)33015-8
  27. Yamada, N., J. Shimizu, M. Wada, T. Takita and S. Innami. 1998. Changes in platelet aggregation and lipid metabolism in rats given dietary lipids containing different n-3 polyunsaturated fatty acids. J. Nutr. Sci. Vitaminol (Tokyo). 44, 279-289
  28. Zhang, J., S. Sasaki, K. Amano, and H. Kesteloot. 1999. Fish consumption and mortality from all causes, ischemic heart disease, and stroke: an ecological study. Prev. Med. 28, 520-529 https://doi.org/10.1006/pmed.1998.0472

Cited by

  1. Immuno-stimulating Activities of Skipjack Tuna Katsuwonus pelamis Cooking Juice Concentrates on Mouse Macrophages and Spleen Cells vol.47, pp.6, 2014, https://doi.org/10.5657/KFAS.2014.0776
  2. Effect of Tuna Extracts on Production of Nitric Oxide and Inflammatory Cytokines vol.45, pp.3, 2013, https://doi.org/10.9721/KJFST.2013.45.3.385
  3. Anti-inflammatory Effect of Water Extract from Tuna Heart on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells vol.30, pp.6, 2015, https://doi.org/10.7841/ksbbj.2015.30.6.326
  4. Anti-inflammatory activity of ethanolic extract from skipjack tuna (Katsuwonus pelamis) heart in LPS-induced RAW 264.7 cells and mouse ear edema model vol.25, pp.3, 2016, https://doi.org/10.1007/s10068-016-0140-5