References
- G. Adomavicus and A. Tuzhilin, 'Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions,' IEEE Transaction on Knowledge and Data engineering, 17(6), 2005, pp. 734-749 https://doi.org/10.1109/TKDE.2005.99
- Wireless World Research Forum, White Paper of Service Personalization, Ver. 1.0, 2003
- 박재영 외 4인, '국외 개인화 서비스 기술 동향,' TTA 저널/정보통신표준화소식, 2008.
- J. Fogarty et al., 'Predicting Human Interruptibility with Sensors,' ACM Trans. on Compute-Human Interaction, 12(1), 2005, 119-146 https://doi.org/10.1145/1057237.1057243
- S. Hudson, et al., 'Examining the Robustness of Sensor-based Statistical Model Human Interruptibility,' Proc. SIGCHI Conf. Human Factors in Computer Systems, 6(1), 2004, pp. 207-214
- A. Krause, A. Smailagic and D. Siewiorek, 'Context-Aware Mobile Computing: Learning Context-Dependent personal Preferences from a Wearable Sensor Array,' IEEE Trans. on Mobile Computing, 5(2), 2006, pp. 113-127 https://doi.org/10.1109/TMC.2006.18
- e-Sense, 'Capturing Ambient Intelligence for Mobile Communications through Wireless Sensor Networks,' IST, 2006
- S. Arbanowski, et al., 'I-Centric Communications: Personalization, Ambient Awarness, and Adaptability for Future Mobile Services,' IEEE Communication Magazine, 2004, pp. 63-69 https://doi.org/10.1109/MCOM.2004.1336722
- S. McBurney, M. Williams, N. Taylor and E. Papadopoulou, 'Managing User Preference for Personalization in a Pervasive Service Environment,'IEEE Advanced International Conf. on Telecommunications, 2007 https://doi.org/10.1109/AICT.2007.27
- IST-2004-511607 MobiLife D27b (D4.1b) v1.0, 2004.
- SPICE, Deliverable N°: 2, 'Title: Specification of pro-active Service Infrastructure for Attentive Services,' 2007
- M. Sutter, O. Droegehorn and K. David, 'User Profile Management on Service Platforms for Ubiquitous Computing Environment,' IEEE Conf. Vehicular Technology, 2007 pp. 287-291 https://doi.org/10.1109/VETECS.2007.71
- H. Hagras, et al., 'A Fuzzy Incremental Synchronous Learning Technique for mbedded-agents Learning and Control in Intelligent Inhabited Environments,' IEEE Conf. Fuzzy Systems, 2002 https://doi.org/10.1109/FUZZ.2002.1004975
- M. C. Mozer, 'The Neural Network House: An Environment that Adapts to Its Inhabitants,' AAAI, 1998, pp. 110–114
- N. Golovin and E. Rahm, 'Reinforcement Learning Architecture for Web Recommendations,' Conf, in Information Technology: Coding and Computing, 2004
- F. Herndex, E. Gaudioso and J. Boticario, 'A Reinforcement Learning Approach to Achieve Unobtrusive and Interactive Recommendation Systems for Web-Based Communities,'LNCS3137, 2004, pp. 409-412 https://doi.org/10.1007/978-3-540-27780-4_62
- P. Rojanavasu, P. Srinil and O. Pinngern, 'New Recommendation System Using Reinforcement Learning,' eBusiness, 2005
- M. Feki, S. Lee, Z. Bien and M. Mokhtai, 'Context Aware Life Pattern Prediction Using Fuzzy-State Q-Learning,' LNCS4541, 2007, pp.185-195
- L. Kaelbling, M. Littman and A. Moore, 'Reinforcement Learning: A Survey,' Journal of Artificial Intelligence Research, vol. 4, 1996, pp. 237-285
- T.Mitchell, MachineLearning, McGraw-Hill, 1997
- H.Keskustalo, Kalervo and A. Prikola, 'The Effects of Relevance Feedback Quallity and Quantity in Interactive Relevance Feedback: A Simulation Based on User Modeling', LNCS3936, 2006, pp. 191-204 https://doi.org/10.1007/11735106_18
- http://archive.ics.uci.edu/ml/
- S. Louis, A. Shankar, 'Context Learning Can Improve User Interaction, Information Reuse and Integration,' IEEE conf. IRI 2004, pp. 115-120 https://doi.org/10.1109/IRI.2004.1431446
- http://www.cs.waikato.ac.nz/ml/weka/
- K.Jearanaitanakij and O. Pinngern, 'An Information Gain Technique for Acceleration of Convergence of Artificial Neural Networks,' Conf. Information, Communications and Signal Processing, 2005, pp.349-352 https://doi.org/10.1109/ICICS.2005.1689065