블러링과 블록킹 수치를 이용한 영상의 무기준법 객관적 화질 평가

No-reference objective quality assessment of image using blur and blocking metric

  • 정태욱 (연세대학교 전기전자공학과) ;
  • 김영희 (연세대학교 학부대학) ;
  • 이철희 (연세대학교 전기전자공학과)
  • Jeong, Tae-Uk (Dept. Electrical & Electronic Engineering, Yonsei University) ;
  • Kim, Young-Hie (University College, Yonsei University) ;
  • Lee, Chul-Hee (Dept. Electrical & Electronic Engineering, Yonsei University)
  • 발행 : 2009.05.25

초록

본 논문에서는 기준영상에 대한 정보가 없는 무기준(No-reference) 정지영상 객관적 화질 평가 방법을 제안한다. 제안하는 무기준 객관적 화질평가 방법은 인간의 시각체계에서 민감하게 반응하고 화질의 주된 열화 요인인 경계영역의 블록킹과 블러링을 측정하여 수치화 한다. 블록킹 정량화를 위해서, 우선 인접 화소간의 차이를 누적하여 블록킹이 발생하는 위치를 찾고 그 교차점에서 블록킹 현상을 2차원 계단함수로 모델링하여 블록킹의 국소적인 강도를 계산한다. 계산된 국소적 수치들은 적절한 함수화를 통하여 블록킹 수치로 사용된다. 이상적인 영상의 경계는 계단함수임을 가정하면 블러링된 영상에서의 경계의 전이 폭을 계산함으로써 블러링 정도를 예측할 수 있다. 주어진 영상을 다시 Gaussian 블러링 커널을 이용하여 블러링시킨 후 두 영상의 경계 마스크 영상을 이용하여 경계 블록을 결정한다. 경계블록을 수평, 수직, 두 대각선 방향으로 사영하여 얻은 사영신호로부터 국소적 극대 및 극소 위치를 이용하여 경계 전이의 폭을 추정한다. 또한 kurtosis와 SSIM을 이용하여 그 수치를 보정하여 블러링의 수치로 사용한다. 제안한 방법의 객관적 화질 수치는 주관적 화질 수치와 비교해 본 결과 높은 상관관계를 가지는 것을 확인할 수 있다.

In this paper, we propose a no-reference objective Quality assessment metrics of image. The blockiness and blurring of edge areas which are sensitive to the human visual system are modeled as step functions. Blocking and blur metrics are obtained by estimating local visibility of blockiness and edge width, For the blocking metric, horizontal and vertical blocking lines are first determined by accumulating weighted differences of adjacent pixels and then the local visibility of blockiness at the intersection of blocking lines is obtained from the total difference of amplitudes of the 2-D step function which is modelled as a blocking region. The blurred input image is first re-blurred by a Gaussian blur kernel and an edge mask image is generated. In edge blocks, the local edge width is calculated from four directional projections (horizontal, vertical and two diagonal directions) using local extrema positions. In addition, the kurtosis and SSIM are used to compute the blur metric. The final no-reference objective metric is computed after those values are combined using an appropriate function. Experimental results show that the proposed objective metrics are highly correlated to the subjective data.

키워드

참고문헌

  1. International Telecommunication Union, 'Objective perceptual video quality measurement techniques for digital cable television in the presence of a full reference,' ITU-R Recommendation BT.1683, 2004
  2. International Telecommunication Union, "Objective perceptual video quality measurement techniques for digital cable television in the presence of a full reference," ITU-T Recommendation J.144, 2004.
  3. International Telecommunication Union, "Perceptual audiovisual quality measurement techniques for multimedia services over digital cable television networks in the presence of a reduced bandwidth reference," ITU-T Recommendation J.246 , 2008
  4. International Telecommunication Union, 'Objective perceptual multimedia video quality measurement in the presence of a full reference,' ITU-T Recommendation J.247, 2008
  5. Z. Wang, A. C. Bovik and B. L. Evans, 'Blind measurement of blocking artifacts in images,' in Proc. IEEE Int. Conf. Image Processing, vol. 3, pp.981-984, Vancouver, BC, Canada, Sep., 2000
  6. K. T. Tan and M. Ghanbari, 'Frequency domain measurement of blockiness in MPEG-2 coded video,' in Proc. IEEE Int. Conf. Image processing, vol.3, pp. 977-980, Vancouver, BC, Canada, Sep. 2000
  7. A. C. Bovik and S. Liu, 'DCT-domain blind measurement of blocking artifacts in DCT-coded images,' in Proc. IEEE Int. Conf. Acoust, Speech, and Signal Processing, vol. 3, pp.1725-1728. Salt Lake City, UT, USA, May. 2001
  8. L. Meesters and J.-B. Martens, 'A single-ended blockiness measure for JPEG-coded images,' Signal Processing, vol. 82, pp.369-387, 2002 https://doi.org/10.1016/S0165-1684(01)00177-3
  9. P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, Perceptual blur and ringing metrics: Application to JPEG2000," Signal Process.:Image Commun., vol. 19, no. 2, pp.163-172, Feb. 2002 https://doi.org/10.1016/j.image.2003.08.003
  10. M. Basu, 'Gaussian-based edge-detection method-a survey,' IEEE Trans. System, Man and Cybernetics, Part C, vol. 32, Issue 3, pp. 252-260, Aug. 2002 https://doi.org/10.1109/TSMCC.2002.804448
  11. K. Suzuki, I. Horiba and N. Sugie, 'Neural edge enhancer for supervised edge enhancement from noisy images,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, Issue 12, pp.1582-1596, Dec. 2003 https://doi.org/10.1109/TPAMI.2003.1251151
  12. H. Hu and G. de Haan, 'Low cost robust blur estimator,' in Proc. IEEE Int. Conf. Image Processing, pp.617-620, 8-11, Atlanta, GA, USA, Oct. 2006
  13. D. Li, R. M. Mersereau, and S. Simske, 'blur identification based on kurtosis minimization,' in Proc. IEEE Int. Conf. Image Processing, vol. 1, pp905-908, Genova, Italy, Sep. 2005
  14. Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, 'image quality assessment: from error visibility to structural similarity,' IEEE Trans. Image Processing, vol. 13. no. 4, pp.600-612, Apr. 2004 https://doi.org/10.1109/TIP.2003.819861
  15. H. R. Sheikn, Z. Wang, L. Cormack and A. C. Bovik, 'LIVE image quality assessment database,' http://live.ece.utexas.edu/research/quality
  16. C. Lee, O. Kwon, 'Objective measurements of video quality using wavelet transform,' Optical Engineering, vol. 42(1), pp.265-272, Jan. 2003 https://doi.org/10.1117/1.1523420