The Physical Properties of Thermotropic Side-Chain Triblock Copolymers of n-Butyl Acrylate and a Comonomer with Azobenzene Group

  • Dan, Kyung-Sik (Division of Applied Chemical Engineering, Hanyang University) ;
  • Kim, Byoung-Chul (Division of Applied Chemical Engineering, Hanyang University) ;
  • Han, Yang-Kyoo (Center for Functionalized Organics and Organic-Inorganics, Department of Chemistry, Hanyang University)
  • Published : 2009.05.31

Abstract

The side chain liquid crystal triblock copolymers (TBCs), which underwent phase transitions below their decomposition temperature, were prepared by copolymerization of poly(n-butyl acrylate) and a comonomer containing the mesogenic azobenzene group. The physical properties of TBCs in the distinctive transition temperature ranges were investigated in terms of the liquid crystal (LC) content in the copolymers. The phase transition temperatures traced optically, thermally and rheologically were well coincided one another and clearly exhibited the phase transition of smectic-nematic-isotropic with increasing temperature. In the smectic phase, increasing temperature made the liquid crystal system more elastic, but viscosity (${\eta}'$) remained almost constant. In the nematic phase, increasing temperature abruptly decreased ${\eta}'$ and G', ultimately leading to isotropic phase. Both smectic and nematic phases exhibited Bingham viscosity behavior but the former gave much greater yield stress at the same LC content.

Keywords

References

  1. R. G. Larson, K. I. Winey, S. S. Patel, H. Watanabe, and R. Bruinsma, Rheol. Acta, 36, 498 (1977) https://doi.org/10.1007/BF00368127
  2. T. Pakula and R. Zentel, Makromol. Chem., 192, 2401 (1991) https://doi.org/10.1002/macp.1991.021921018
  3. R. H. Colby, J. R. Gillmor, G. Galli, M. Laus, C. K. Ober, and E. Hall, Liq. Cryst., 13, 233 (1993) https://doi.org/10.1080/02678299308026297
  4. R. H. Colby, K. Ober, J. R. Gillmor, R. W. Conelly, T. Duong, G. Galli, and M. Laus, Rheol. Acta, 36, 498 (1977) https://doi.org/10.1007/BF00368127
  5. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993
  6. R. M. Kannan and J. A. Kornfield, Macromolecules, 26, 2050 (1993) https://doi.org/10.1021/ma00060a038
  7. R. M. Kannan, S. F. Rubin, J. A. Kornfield, and C. Boeffel, J. Rheol., 38, 1609 (1994) https://doi.org/10.1122/1.550606
  8. S. F. Rubin, R. M. Kannan, J. A. Kornfield, and C. Boeffel, Macromolecules, 28, 3521 (1995) https://doi.org/10.1021/ma00114a005
  9. J. Brghausen, J. Fuchs, and W. Richtering, Macromolecules, 30, 7574 (1977) https://doi.org/10.1021/ma970430i
  10. I. Quijada-Garrido, H. Siebert, C. Friedrich, and C. Schmidt, Rheol. Acta, 38, 3495 (1999)
  11. I. Quijada-Garrido, H. Siebert, C. Friedrich, and C. Schmidt, Macromolecules, 33, 3844 (2000) https://doi.org/10.1021/ma991490m
  12. R. W. Lenz, J. Polym. Sci.: Polym. Symp., 72, 1 (1985)
  13. Y.-K. Han, B. D. Dufour, W. Wu, T. Kowalewski, and K. Matyjaszewski, Macromolecules, 37, 9355 (2004) https://doi.org/10.1021/ma0492059
  14. J. Rosedals and F. S. Bates, Macromolecules, 23, 2329 (1990) https://doi.org/10.1021/ma00210a032
  15. B. J. Kim, D. K. Oh, and J. Y. Chang, Macromol. Res., 16, 103 (2008) https://doi.org/10.1007/BF03218837
  16. A. K. Choi, Y. W. Kim, and J. H. Koh, Macromol. Res., 16, 384 (2008) https://doi.org/10.1007/BF03218533
  17. K. M. Lee and C. D. Han, Macromolecules, 35, 3145 (2002) https://doi.org/10.1021/ma012036x
  18. A. Wewerka, G. Floudas, T. Pakula, and F. Stelzer, Macromolecules, 34, 8129 (2001) https://doi.org/10.1021/ma010944o
  19. K. M. Lee and C. D. Han, Macromolecules, 35, 6263 (2002) https://doi.org/10.1021/ma012240k
  20. I. W. Hamley, P. Davidson, and A. Gleeson, Polymer, 40, 3599 (1999) https://doi.org/10.1016/S0032-3861(98)00537-0