Templated Formation of Silver Nanoparticles Using Amphiphilic Poly(epichlorohydrine-g-styrene) Film

  • Park, Jung-Tae (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Koh, Joo-Hwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Seo, Jin-Ah (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Roh, Dong-Kyu (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Published : 2009.05.31

Abstract

This work has demonstrated that a novel amphiphilic poly(epichlorohydrine)-graft-polystyrene (PECH-g-PS) copolymer at 34:66 wt% was synthesized via atom transfer radical polymerization (ATRP) of styrene using PECH as a macroinitiator. The structure of the graft copolymer was characterized by nuclear magnetic resonance ($^1H$ NMR) and FTIR spectroscopy, demonstrating that the "grafting from" method using ATRP was successful. The self-assembled graft copolymer was used as a template film for the in-situ growth of silver nanoparticles from $AgCF_3SO_3$ precursor under UV irradiation. The in situ formation of silver nanoparticles with 6-8 nm in average size in the solid state template film was confirmed by transmission electron microscopy (TEM), UV-visible spectroscopy and wide angle X-ray scattering (WAXS). Differential scanning calorimetry (DSC) also displayed the selective incorporation and the in situ formation of silver nanoparticles within the hydrophilic PECH domains, probably due to stronger interaction of the silvers with the ether oxygens of PECH backbone than that with hydrophobic PS side chains.

Keywords

References

  1. M. Popa, T. Pradell, D. Crespo, and J. M. Calder\acute{o}n-Moreno, Colloid Surface A, 303, 184 (2007) https://doi.org/10.1016/j.colsurfa.2007.03.050
  2. J. K. Choi, Y. W. Kim, J. H. Koh, J. H. Kim, and A. M. Mayes, Macromol. Res., 15, 553 (2007) https://doi.org/10.1007/BF03218830
  3. R. D. Deshmukh and R. J. Composto, Chem. Mater., 19, 745 (2007) https://doi.org/10.1021/cm062030s
  4. W. Yan, V. Petkov, S. M. Mahurin, S. H. Overbury, and S. Dai, Catalysis Commun., 6, 404 (2005) https://doi.org/10.1016/j.catcom.2005.04.004
  5. J. Wang, G. D. Liu, M. H. Engelhard, and Y. H. Lin, Anal. Chem., 78, 6974 (2006) https://doi.org/10.1021/ac060809f
  6. A. H. Yuwono, Y. Zhang, J. Wang, X. H. Zhang, H. M. Fan, and W. Ji, Chem. Mater., 18, 5876 (2006) https://doi.org/10.1021/cm061495f
  7. S. B. Hamouda, Q. T. Nguyen, D. Langevin, C. Chappey, and S. Roudesli, React. Funct. Polym., 67, 893 (2007) https://doi.org/10.1016/j.reactfunctpolym.2007.05.014
  8. B. Alexandre, S. Marais, D. Langevin, P. Médéric, and T. Aubry, Desalination, 199, 164 (2006) https://doi.org/10.1016/j.desal.2006.03.035
  9. A. Heilmann, A. Kiesow, M. Gruner, and U. Kreibig, Thin Solid Films, 344, 175 (1999) https://doi.org/10.1016/S0040-6090(98)01599-5
  10. S. H. Ahn, S. H. Kim, B. C. Kim, K. B. Shim, and B. G. Cho, Macromol. Res., 12, 293 (2004) https://doi.org/10.1007/BF03218403
  11. S. T. Dubas, P. Kumlangdudsana, and P. Potiyaraj, Colloid Surface A, 289, 105 (2006) https://doi.org/10.1016/j.colsurfa.2006.04.012
  12. Y. Shiraishi and N. Toshima, J. Mol. Catal. A: Chem., 141, 187 (1999) https://doi.org/10.1016/S1381-1169(98)00262-3
  13. L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, and G. Morcillo, Langmuir, 17, 574 (2001) https://doi.org/10.1021/la001038s
  14. Y. S. Kang, S. W. Kang, H. S. Kim, J. H. Kim, J. Won, C. K. Kim, and K. Char, Adv. Mater., 19, 475 (2007) https://doi.org/10.1002/adma.200601009
  15. S. G Boyes, B. Akgun, W. J. Brittain, and M. D. Foster, Macromolecules, 36, 9539 (2003) https://doi.org/10.1021/ma035029c
  16. J. H. Kim, B. R. Min, H. S. Kim, J. Won, and Y. S. Kang, J. Membr. Sci., 212, 283 (2003) https://doi.org/10.1016/S0376-7388(02)00451-9
  17. C. J. Huang and T. C. Chang, J. Appl. Polym. Sci., 91, 270 (2004) https://doi.org/10.1002/app.12949
  18. K. Ishizu, T. Furukawa, and H. Yamada, Eur. Polym. J., 41, 2853 (2005) https://doi.org/10.1016/j.eurpolymj.2005.06.014
  19. J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, J. Polym. Sci. Part B: Polym. Phys., 44,1168 (2006) https://doi.org/10.1002/polb.20777
  20. J. H. Kim, C. K. Kim, J. Won, and Y. S. Kang, J. Membr. Sci., 250, 207 (2005) https://doi.org/10.1016/j.memsci.2004.10.032
  21. J. Won, Y. Yoon, and Y. S. Kang, Macromol. Res., 10, 80 (2002) https://doi.org/10.1007/BF03218294
  22. H. Kang, W. Liu, B. He, D. Shen, L. Ma, and Y. Huang, Polymer, 47, 7927 (2006) https://doi.org/10.1016/j.polymer.2006.09.017
  23. D. Shen and Y. Huang, Polymer, 45, 7091 (2004) https://doi.org/10.1016/j.polymer.2004.08.042
  24. I. Cakmak and H. Baykara, J. Appl. Polym. Sci., 102, 2725 (2006) https://doi.org/10.1002/app.24301
  25. R. Zhang, J. Liu, B. Han, J. He, Z. Liu, and J. Zhang, Langmuir, 19, 8611 (2003) https://doi.org/10.1021/la0352265
  26. T. Sakai and P. Alexandridis, Chem. Mater., 18, 2577 (2006) https://doi.org/10.1021/cm051757y
  27. T. Sakai and P. Alexandridis, Chem. Mater., 18, 2577 (2006) https://doi.org/10.1021/cm051757y
  28. D. K. Lee, K. J. Lee, Y. W. Kim, B. R. Min, and J. H. Kim, J. Polym. Sci. Part B: Polym. Phys., 45, 1018 (2007) https://doi.org/10.1002/polb.21086
  29. Y. W. Kim, D. K. Lee, K. J. Lee, B. R. Min, and J. H. Kim, J. Polym. Sci. Part B: Polym. Phys., 45, 1283 (2007) https://doi.org/10.1002/polb.21183
  30. D. B. Zhang, L. M. Qi, J. M. Ma, and H. M. Cheng, Chem. Mater., 13, 2753 (2001) https://doi.org/10.1021/cm0105007
  31. Z. L. Lei and Y. H. Fan, Mater. Lett., 60, 2256 (2006) https://doi.org/10.1016/j.matlet.2005.12.136
  32. S. G. Boyes, B. Akgun, W. J. Brittain, and M. D. Foster, Macromolecules, 36, 9539 (2003) https://doi.org/10.1021/ma035029c
  33. C. J. Huang and T. C. Chang, J. Appl. Polym. Sci., 91, 270 (2004) https://doi.org/10.1002/app.12949
  34. X. Jiang, Y. Xie, J. Lu, L. Zhu, W. He, and Y. Qian, Langmuir, 17, 3795 (2001) https://doi.org/10.1021/la001361v
  35. L. Sun, Z. Zhang, and H. Dang, Mater. Lett., 57, 3874 (2003) https://doi.org/10.1016/S0167-577X(03)00232-5
  36. D. B. Hamal and K. J. Klabunde, J. Colloid Interf. Sci., 311, 514 (2007) https://doi.org/10.1016/j.jcis.2007.03.001
  37. P. E. Trapa, Y. Y. Won, S. C. Mui, E. A. Olivetti, B. Huang, D. R. Sadoway, A. M. Mayes, and S. J. Dallek, Electrochem. Soc., 152, A1 (2005) https://doi.org/10.1149/1.1824032
  38. H. D. Maynard, S. P. Lyu, G. H. Fredrickson, F. Wudl, and B. F. Chmelka, Polymer, 42, 7567 (2001) https://doi.org/10.1016/S0032-3861(01)00230-0
  39. A. H. Trivedi, S. J. Kwak, and S. G. Lee, Polym. Eng. Sci., 41, 1923 (2001) https://doi.org/10.1002/pen.10889
  40. E. Tang, H. Liu, L. Sun, E. Zheng, and G. Cheng, Eur. Polym. J., 43, 4210 (2007) https://doi.org/10.1016/j.eurpolymj.2007.05.015
  41. M. Z. Rong, M. Q. Zhang, H. B. Wang, and H. M. Zeng, Appl. Surf. Sci., 200, 76 (2002) https://doi.org/10.1016/S0169-4332(02)00620-7