References
- Ahmed, S. E., Antonini, R. G. and Volodin, A. (2002). On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements with application to moving average processes, Statistics & Probability Letters, 58, 185-194 https://doi.org/10.1016/S0167-7152(02)00126-8
- Alam, K. and Saxena, K. M. L. (1981). Positive dependence in multivariate distributions, Communi-cations in Statistics - Theory and Methods, 10, 1183-1196 https://doi.org/10.1080/03610928108828102
- Baek, J. I., Kim, T. S. and Liang, H. Y. (2003). On the convergence of moving average processes under dependent conditions, Australian & New Zealand Journal of Statistics, 45, 331-342 https://doi.org/10.1111/1467-842X.00287
- Bai, J. and Su, C. (1985). The compmete convergence for partial sums of lID random variables, Scientia Sinica, 28, 1261-1277
- Burton, R. M. and Dehling, H. (1990). Large deviations for some weakly dependent random pro-cesses, Statistics & Probability Letters, 9, 397-401 https://doi.org/10.1016/0167-7152(90)90031-2
- Ghosal, S. and Chandra, T. K. (1998). Complete convergence of martingale arrays, Journal of Theo-retical Probability, 11, 621-631 https://doi.org/10.1023/A:1022646429754
- Gut, A. (1992). Complete convergence for arrays, Periodica Mathematica Hungarica, 25, 51-75 https://doi.org/10.1007/BF02454383
- Hsu, P. L. and Robbins, H. (1947). Complete convergence and the law of large numbers, In Proceedings of the National Academy of Sciences of the United States of America, 33, 25-31 https://doi.org/10.1073/pnas.33.2.25
- Hu, T. C., Moricz, F., Taylor, R. L. and Rosalsky, A. (1986). Strong laws of large numbers for arrays of rowwisw independent random variables, Statistics Technical Report 27, 17, University of Georgia
- Hu, T. C., Rosaisky, A., Szynal, D. and Volodin, A. (1999). On complete convergence for arrays of rowwise independent random elements in Banach spaces, Stochastic Analysis and Applications, 17, 963-992 https://doi.org/10.1080/07362999908809645
- Kuczmaszewska, A. and Szynal, D. (1994). On complete convergence in a Banach space, Interna-tional Journal of Mathematics and Mathematical Sciences, 17, 1-14 https://doi.org/10.1155/S0161171294000013
- Li, D., Rao, M. B. and Wang, X. C. (1992). Complete convergence of moving average processes, Statistics & Probability Letters, 14, 111-114 https://doi.org/10.1016/0167-7152(92)90073-E
- Liang, H. Y. (2000). Complete convergence for weighted sums of negatively associated random vari-ables, Statistics & Probabiliyv Letters, 48, 317-325 https://doi.org/10.1016/S0167-7152(00)00002-X
- Matular, P. (1992). A note on the almost sure convergence of sums of negatively dependent random variables, Statistics & Probability Letters, 15, 209-213 https://doi.org/10.1016/0167-7152(92)90191-7
- Pruitt, W. E. (1966). Summability of independent of random variables, Journal of Applied Mathemat-ics and Mechanics, 15, 769-776
- Rohatgi, V. K. (1971). Convergence of weighted sums of independent random variables, In Proceed-ings of the Cambridge Philosophical Society Mathematical, 69, 305-307 https://doi.org/10.1017/S0305004100046685
- Su, C. and Qin, Y. S. (1997). Limit theorems for negatively associated sequences, Chinese Science Bulletin, 42, 243-246 https://doi.org/10.1007/BF02882446
- Wang, X., Rao, M. B. and Yang, X. (1993). Convergence rates on strong laws of large numbers for arrays of rowwise independent elements, Stochastic Analysis & Applications, 11, 115-132 https://doi.org/10.1080/07362999308809305
- Zhang, L. X. (1996). Complete convergence of moving average processes under dependence assumptions, Statistics & Probability Letters, 30, 165-170 https://doi.org/10.1016/0167-7152(95)00215-4