DOI QR코드

DOI QR Code

단일변이 탐색법과 유전 알고리즘에 의한 탱크모형 매개변수 결정 비교 연구

Comparison of Estimating Parameters by Univariate Search and Genetic Algorithm using Tank Model

  • 이성용 (서울대학교 생태조경.지역시스템공학부 대학원) ;
  • 김태곤 (서울대학교 생태조경.지역시스템공학부 대학원) ;
  • 이제명 (서울대학교 생태조경.지역시스템공학부 대학원) ;
  • 이은정 (서울대학교 생태조경.지역시스템공학부 대학원) ;
  • 강문성 (서울대학교 조경.지역시스템공학부, 서울대학교 농업생명과학연구원) ;
  • 박승우 (서울대학교 조경.지역시스템공학부, 서울대학교 농업생명과학연구원) ;
  • 이정재 (서울대학교 조경.지역시스템공학부, 서울대학교 농업생명과학연구원)
  • 발행 : 2009.05.31

초록

The objectives of this study are to apply univariate search and genetic algorithm to tank model, and compare the two optimization methods. Hydrologic data of Baran watershed during 1996 and 1997 were used for correction the tank model, and the data of 1999 to 2000 were used for validation. RMSE and R2 were used for the tank model's optimization. Genetic algorithm showed better result than univariate search. Genetic algorithm converges to general optima, and more population of potential solution made better result. Univariate search was easy to apply and simple but had a problem of convergence to local optima, and the problem was not solved although search the solution more minutely. Therefore, this study recommend genetic algorithm to optimize tank model rather than univariate search.

키워드

참고문헌

  1. Choi, M. H., J. H. Ahn, J. H. Kim & Y. N. Yoon. 2001. Parameter Estimation for Nash Model and Diskin Model by Optimization Techniques. Korean Society of Hazard Mitigation 1(3): 73-82. (in Korean)
  2. Jin G. G. & S. R. Joo. 2000. A Study on a Real-Coded Genetic Algorithm. Journal of control, automation and systems engineering 6(4): 268-275. (in Korean)
  3. Kim, C. & S. G. Kim. 2004. Parameter Optimization of TANK Model using Geographic Data. Journal of the Korean Society of Civil Engineers 24(6B): 553-560. (in Korean)
  4. Kim, J. S., Y. I. Moon, & T. S. Oh. 2005. A Study on Parameter Optimization for Estimation of Probability Maximum Flood in Hoengseong Dam Basin. Journal of the Institute of Industrial Technology 13: 51-58. (in Korean)
  5. Kim, T. S., I. W. Jung, B. Y. Koo, & D. H. Bae. 2007. Optimization of Tank Model Parameters Using Multi- Objective Genetic Algorithm(I): Methodology and Model Formulation. Journal of Korea Water Resources Association 40(9): 677-685. (in Korean) https://doi.org/10.3741/JKWRA.2007.40.9.677
  6. Lee, S. H. & S. U. Kang. 2007. A Parameter Regionalization Study of a Modified Tank Model Using Characteristic Factors of Watersheds. Journal of the Korean Society of Civil Engineers 27(4B): 379-385. (In Korean)
  7. M. Gen & R. Cheng. 1997. Genetic algorithms and engineering design. John-Wiley & Sons, Inc., N.Y
  8. Moon, B. R., 2008. Easy to learning Genetic Algorithm. Hanbit media, Seoul. (in Korean)
  9. Park H. N. & W. C. Cho. 2006. Derivation of a Tank Model with a Conceptual Rainfall-Infiltration Process. Journal of Korea Water Resources Association 39(1): 47-57. (in Korean) https://doi.org/10.3741/JKWRA.2006.39.1.047
  10. Sugawara, M.. 1972. A method for runoff analysis, Kyoritsu Shuppan Press, Tokyo. (in Japanese)
  11. Klaus Meffert. Java Genetic Algorithms Package, http://jgap. sourceforge.net, Accessed 5 Dec. 2008
  12. Korea Water Resource Corporation. 1999. A Study about the optimization for planning water resource(III): Evaluating safety and Development of planning framework for water supply. Goyang, Gyeonggi.: Korean Institute of Construction Technology
  13. Ministry of Land, Transport and Maritime Affairs. 1997. Survey of development methods about water management techniques. Goyang, Gyeonggi.: Korean Institute of Construction Technology

피인용 문헌

  1. Evaluation of the Tank Model Optimized Parameter for Watershed Modeling vol.56, pp.4, 2014, https://doi.org/10.5389/KSAE.2014.56.4.009