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ABSTRACT

In this paper, a complex-valued recursive least squares escalator filter algorithm with reduced computational
complexity for complex-valued signal processing applications is presented. The local tap weight of RLS-ESC
algorithm is updated by incrementing its old value by an amount equal to the local estimation error times the
local gain scalar, and for the gain scalar, the local input autocorrelation is calculated at the previous time. By

deriving a new gain scalar that can be calculated by using the current local input autocorrelation, reduced
computational complexity is accomplished. Compared with the computational complexity of the complex-valued
version of RLS-ESC algorithm, the computational complexity of the proposed method can be reduced by 50%
without performance degradation. The reduced computational complexity of the proposed algorithm is even less
than that of the LMS-ESC. Simulation results for complex channel equalization in 64QAM modulation schemes
demonstrate that the proposed algorithm has superior convergence and consteliation performance.
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I. Introduction

The escalator (ESC) filter structure orthogonalizes
the input signal using Gram-Schmidt orthogonalization
procedurem. The ESC using least mean square
(LMS-ESC) in which mean squared local estimation
errors are minimized was used in the multi-channel
filtering problemsm. In [3], the LMS-ESC has been
used in order to improve the performance of the
transform-domain LMS (TRLMS) adaptive filtering.
The method improves the performance of the TRLMS
algorithm by eliminating nontrivial nondiagonal
entrees of the correlation matrix of the transformed
input process by using the escalator structure.
computational complexity of the escalator structure
is inherently O(N’) for the filter length N but
depends on the sparseness of the correlation matrix
of the transformed vector. In the case of DWT, it is
O(Nlog N) operations per iteration™.

Recently, by introducing least squares (LS)
approach to the local errors of the ESC structure, a

recursive least squares-ESC (RLS-ESC) for
real-valued signal processing has been proposed[‘”.
The RLS-ESC algorithm has faster convergence than
the LMS-ESC algorithm but it requires four third
times the computational complexity of the
LMS-ESC. The escalator structure has superior
performance, but its adaptation algorithms require
more studies for reducing computational complexity
and for some complex-valued signal processing
applications. The present study proposes a complex-
valued recursive least squares ESC (CRLS-ESC)
algorithm that has reduced computational complexity
significantly even less than the LMS-ESC.

This paper is organized as follows. In Section II,
we briefly describe the escalator filter structure. In
Section III, algorithms for escalator filter structure
are described. The complex-valued recursive least
squares ESC (CRLS-ESC) algorithm that has
reduced computational complexity is proposed in
Section IV. Simulation results are presented in
Section V, and conclusions are drawn in Section VL
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II. Escalator Filter Structure

Given a symmetric matrix R, there exists a unit
lower triangular (ULT) matrix W , such that WRW T is
a diagonal matrix. The ULT matrix J¥ can be computed
in the form of w = WyWy,-W. The ULT
transformation Y (k) =W - X(k) means that system
W generates the uncorrelated output vector Y (k) for
the N - dimensional vector X (k) where its symmetric
autocorrelation matrix R = E[X(K)XT(k)]. If we
define X (k) as an input vector augmented with the
desired sample d(k), X(k)=[x(k—~N+1),x(k—N+2),

W x(k),d()]" and Y(k)=[Ak—N+D),(k-N+2),
s Y(k),e(k)]" as an output vector augmented with the
error sample e(k), e(k)=d(k)—y(k), Y(k)=W X(k)
becomes filtering process of ESC structure.

We can realize the ULT transformation sequentially
like Y(K)=W X&), Y,(k)=W,-Y(k) and
Y,(k) =W, - Y, (k) etc. The final stage’s output vector

Yy (k) becomes Y(k). The corresponding ESC filter
realization for N=3 (N is the total number of stages) is
shown in Fig. 1 and the general ESC filter equations for

the weight aj.(k) are

Vi k=my=y, ., (k"m)_a;- (k)Y (k—n),
Yonalk+D)=d(k),y, ;()=x(),y,;(k+D) =¢,(k), (1)

for 1<i<n, 1<j<N-i+l, m=N-i—j, n=N—-iand
i is the stage number. This ESC filter structure
orthogonalizes the input signal vector.

. Adaptive Escalator Algorithms

The adaptive implementation to estimate the weight
a; (k)exploits the fact that the prediction errors at
each stage, Vi; (k—m), are local and utilizes the

method of steepest descent to minimize the square of
these errors. With time-varying convergence parameters

#;(k) | LMS-ESC algorithm™ is

aj(k+)=c; () +p,(k)y, ,(k~m)y,_,, (k—n) (2)
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Fig. 1. ESC filter structure for N=3

where, Hi (ky=2u/ vyi(k) and vyi(k) is estimated

using a recurrence relation given by
v, (k) =0, (k=D +1-0)y,,(k—n) ©)]

and 0<8<1,
Building an extension to (2) and (3), the complex
form of LMS-ESC algorithm (CLMS-ESC) can be
acquired (the asterisk designates complex conjugate).

a; ‘k+h)=d' (k)+

J’

k) Vi ij (k m)y i, l(k n) (4)

where # is convergence parameter, and
v,y =, (k-D+ A=)y, (k- (S

For faster convergence than the LMS algorithm,
the recursive least squares (RLS) algorithm can be
applied to ESC filter weight adaptation with some
modification. Adopting LS criterion to the local ESC

filter structure for updating aj. (k) , the performance

index J(k) to be minimized is

J(k)=Zw/‘ "y (p=m)

=S WPy up-m-y.,(p-n)-®F (6

p=0
where W represents a weighting factor 0 <w <1,
Minimization of J(k) in (6) with respect to

a; (k) yields
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k
Zwkﬂ)yi—l,jﬂ (p-my,(p—n)
; 0
o, (k)= L

T N
D WY (p-n)
p=0

Defining the numerator and denominator in (7) as

A(k) and B(k) | respectively, (k) can be

- A®)

0= 5

®

i
The weight & (*) can be computed in recursive

forms™ as

ay)y=a;(k-D+gk)y, (k-m) (9

where,
Vi k= mB (k1)
k) = >
i sy s S
and
B7'(k)

=w ' [B7 (k1) - g(k)y,,, (k—-mB™ (k=1)] (11)

The initial value of B(k) is a small positive
constant to avoid B(k) from being ill-conditioned.
The RLS-ESC algorithm consisting of (9) and (10)
has faster convergence than the LMS-ESC algorithm
but it requires four thirds times the computational
complexity of the LMS-ESC™,

IV. Complex-valued RLS-ESC
(CRLS-ESC) Algorithm with Reduced
Computational Complexity

The least-squares performance index for complex
signals can be expressed as

(k) = Zwk"] |y, (p—m)|? (12)

Defining complex-valued version of A(k)as C(k)

and complex-valued version of B(k)as D(k),
complex-valued aj. (k), ﬁ; (k), can be

oy = E8)
ﬁj(k)—D(k) (13)

where C(k)and D(k) can be expressed recursively

in time as
Cky=w-Clk=D+y_, ,(k—m)y.,(k—n) (14)
D(k)=w-D(k =D+ y,_, (k=n)|° (15)

The denominator D(k) is a local input autocorrelation

which is weighted by the exponential factor wr,

The inverse of (15) can be rearranged as

D' (k) =[w- Dk =11+ y,,, (k=m) T

_ W71 . [D*1 (k —_ 1) — f(k)yi—l,l (k - 7’1)D71 (k - 1)] (16)

where,

Ck-mD (k-1
1) = Vi lk=m)D " (k-1)

Tt Gk-mPD G-y D

Instead of (10), using (17) and (16), we can
acquire a complex form of RLS-ESC algorithm.

Bi(ky=B;(k=D+ f(k)y, ;(k—m) (18)

The local tap weight ﬁ,l (k) is updated by
incrementing its old value by an amount equal to the

a local estimation etror Vi ; (k=m) times the local
gain scalar f(k).

Equation (17) can be rearranged into

yiuk=mD(k=1)
= fwH| p,0y(k=m) " D™ (k- D] (19)

By multiplying the both sides of (16) with Yiu®=7),

we acquire
D (k)y;y (k—n)y =w™ - [D7 (k=D)y;,, (k—n)
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~ )y (k- P D k-] (0)

Replacing 2™ K =Dy,(k=min (20) with (19),
(20) becomes

D (k)y,,(k—n) = f(k) 21)

It is noticeable that the local input autocorrelation
for the conventional RLS-ESC is calculated at the
previous time as described in (17) but the new gain
scalar (21) is calculated by using the current local
input autocorrelation.

Substituting (21) for FK) in (18), a complex-
valued RLS-ESC algorithm with reduced computational
complexity (CRLS-ESC) can be obtained as

Bi(k) = Bi(k=1)+ D" (k). (k—n)y, ;(k—m)

y:—l,l (k- n)yi,j (k—m)
D(k) 22)

= Bitk-1+

where D(k)is computed by (15).
The initial value of D(k) is also a small positive
constant to avoid D(k) from being ill-conditioned.
The ESC filter structure with N stages inherently

has 0.5(N* +N) weights. The number of complex
multiplications and divisions of the proposed
algorithm can be computed in (22) and (15). The
proposed algorithm, therefore, requires only

2(N*+N). On the other hand, the number of
complex computations in RLS-ESC using (17) and

16y is 4V 2+N). It can be noticed that the
proposed method can reduce the computational
burden of the CRLS-ESC algorithm by half.
Compared with the computations in (4) and (5), it
has computational complexity even less than the
LMS-ESC. The proposed method can be a
successful alternative to the escalator coefficient
adaptation algorithms in order to improve the
performance and reduce the computational
complexity of the transform-domain escalator

filtering™ which has O(N10gN) operations in case
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of DWT and uses the LMS-ESC.
V. Simulation Results and Discussion

In this section the performance of proposed
algorithm is investigated in complex channel
equalization for 64 QAM modulation schemes. The
three complex algorithms are considered: the
complex LMS algorithm in tapped delay line
(CLMS-TDL), CLMS-ESC in (4) and CRLS-ESC in
(20). The complex channel models™ are

CH 1:

H,(2) =(0.944- jO.87)[1—(0.0787+ j0.0768z]-
[1-(0.188+ j0.079z ][l +(0.158+ j04202z7] (23

CH 2.

H,(z)=(0.54- j0.63)[1 -(0.675— j0.145z]
[1-(0.15+ j0.28)z][1+0.2z™'] (24)

The CLMS-TDL algorithm has 22 tap weights.
The CLMS-ESC and the CRLS-ESC algorithm
consist of 22 stages. A zero mean white Gaussian
noise sequence with variance 0.001 is added to yield
the equalizer input. The convergence parameters 24
of the CLMS-TDL are 0.02 and 0.05 for CH 1 and
CH 2, respectively. This choice of convergence
parameter results in approximately the same
minimum MSE as that of the ESC algorithms. The
convergence parameter 24 and smoothing parameter
@ of CLMS-ESC are 0.02 and 0.98, respectively.
The weighting factor w for CRLS-ESC is 0.98. The
convergence results are illustrated in Fig. 2 and 3,
and their constellation performance for 64 QAM
constellation at 300 samples for CH 2 is depicted in
Fig. 4-6. The results show that the proposed algorithm
has superior convergence performance in complex
channel equalization.

To choose proper weighting factor w for the
proposed, MSE performance comparison for the
varying parameter value in CH 2 is presented in Fig.
7. Clearly, small weighting factor makes the

performance fast and large factor induces slow
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Fig. 2. MSE convergence performance in CH 1.
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Fig. 3. MSE convergence performance in CH 2.
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Fig. 4. 64 QAM constellation performance of CLMS-TDL.
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Fig. 5. 64 QAM constellation performance of CLMS-ESC.
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Fig. 6. 64 QAM constellation performance of CRLS-ESC.
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Fig. 7. MSE convergence comparison with varying weighting
factor of the proposed algorithm.
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learning speed but decreased minimum MSE. In this
simulation, 0.98 is chosen as the best factor and it is
noticeable that a more in-depth research on the effect
of parameters on the proposed algorithm is needed.

VI. Conclusions

In this paper, a new escalator-weight adaptation
algorithm for complex-valued signal processing is
presented and the problem of designing RLS-ESC
filter algorithms with reduced complexity was
investigated. The computational complexity of the
proposed algorithm is reduced by 50% without
performance degradation comparing to complex-valued
version of original RLS-ESC. It even has lower
computational complexity than the LMS-ESC. In
order to improve the performance and reduce the
computational complexity of the transform-domain
escalator filtering, the proposed method can be a
successful alternative to the escalator coefficient
adaptation  algorithms. Simulation results for
complex channel equalization in 64 QAM
modulation schemes demonstrate that the proposed
algorithm has superior convergence performance and
is readily applicable to complex-valued signal
processing applications.
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