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MULTISPLITTING'
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ABSTRACT. In this paper, we study the convergence of relaxed two-stage
multisplitting method using M-splittings or SOR multisplitting as inner
splittings and an outer splitting for solving a linear system whose coefficient
matrix is an M-matrix. We also provide numerical experiments for the
convergence of the relaxed two-stage multisplitting method.
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1. Introduction

In this paper, we consider relaxed two-stage multisplitting method for solving
a linear system of the form

A.’E:b, SL‘,bERn, (1)

where A € R™™™ is a large sparse M-matrix. Multisplitting method was intro-
duced by O’Leary and White [7] and was further studied by many authors [4, 5,
6, 8, 10, 11].

A matrix A = (a;;) € R™" is called monotone if A~} > 0. A matrix
A = (ay;) € R"*™ is called an M -matriz if A is monotone and a;; < 0 for i # j.
A representation A = M — N is called a splitting of A when M is nonsingular.
A splitting A = M — N is called regular if M1 > 0 and N > 0, weak regular
if M~ > 0and M~'N > 0, and M-splitting of A if M is an M-matrix and
N > 0.

A collection of triples (Mg, Ny, Ex), k = 1,2,...,¢, is called a multisplitting
of Aif A = M, — N is a splitting of A for k = 1,2,...,¢, and E}’s, called
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4

weighting matrices, are nonnegative diagonal matrices such that ZE’“ =1
k=1

The relazed two-stage multisplitting method with a relaxation parameter 3 > 0

using A = Mj, — Nj as outer splittings and My = By, — Cj, as inner splittings is

as follows.

ALGORITHM 1: RELAXED TWO-STAGE MULTISPLITTING METHOD
Given an initial vector zg

For ¢ =1,2,..., until convergence
Fork=1to¢
Yk,0 = Ti—1
Forj=1tos

Yrj = BBy H(Cryk j—1 + Nxxic1 +b) + (1 — B)Yr,j—1
,

z; = Z Eryr,s
k=1

In Algorithm 1, it is assumed to be s > 1. Bru et al [2] showed that if
0 < B £ 1, then Algorithm 1 converges for a monotone matrix A under the
assumption that the outer splittings A = My — Nj are regular and the inner
splittings My = By — Cj are weak regular.

In 1991, Wang [10] studied the convergence of relaxed multisplitting method
associated with AOR multisplitting for solving the linear system (1). In this pa-
per, we study the convergence of relaxed two-stage multisplitting method using
M-splittings or SOR multisplitting as inner splittings and an outer splitting for
solving the linear system (1). This paper is organized as follows.

In Section 2, we present some notation and well-known results. In Section 3,
we provide convergence results of relaxed two-stage multisplitting method using
M-splittings or SOR multisplitting as inner splittings and an outer splitting. In
Section 4, we provide numerical experiments for the convergence of the relaxed
two-stage multisplitting method.

2. Preliminaries

For a vector x € R™, x > 0 (x > 0) denotes that all components of x are
nonnegative (positive). For two vectors =,y € R”, z > y (z > y) means
that x —y > 0 (¢ —y > 0). For a vector z € R", |z| denotes the vector
whose components are the absolute values of the corresponding components of
x. These definitions carry immediately over to matrices. Let diag(A) denote
a diagonal matrix whose diagonal part coincides with the diagonal part of A,
and let p(A) denote the spectral radius of a square matrix A. Varga [9] showed
that for any square matrices A and B, |4| < B implies p(4) < p(B). It is
well-known that if A = M — N is a weak regular splitting, then A=! > 0 if and
only if p(M~!N) < 111, 9].
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It is also well-known that if A > 0 and there exists a vector z > 0 and an
o > 0 such that Az < az, then p(4) < o [1].

Theorem 2.1 ([2]). Let A € R™ ™ be a monotone matriz. Assume that the
outer splittings A = My — N are reqular and the inner splittings My = By — Cy,
are weak reqular. If 0 < 3 < 1, then the relazed two-stage multisplitting method
converges to the exact solution of Ax = b for any initial vector xo.

The SOR multisplitting to be used in this paper is defined as follows.

Definition 2.1. Let 0 <w <2 and A=D — Ly — U fork=1,2,...,£, where
D = diag(A), Ly’s are strictly lower triangular matrices, and Uy ’s are general

matrices. (Mk(w), Ni(w), Ek), k=1,2,...,¢, is called the SOR multisplitting

of A if (Mk(w),Nk(w),Ek>, k=1,2,...,4, is a multisplitting of A, My(w) =
1 1

;(D —wkly), and Np{w) = - (1 —w)D + wUy).

If w = 1 in Definition 2.1, then the SOR multisplitting of A is called the
Gauss-Seidel multisplitting of A. In this case, My(w) = D— Li and Ng(w) = Uy.

3. Convergence results of relaxed two-stage multisplitting method

In this section, we consider convergence of relaxed two-stage multisplitting
method (Algorithm 1) with a relaxation parameter 8 > 0 using an outer splitting
A = M — N and inner splittingss M = By — Ci. Then, Algorithm 1 can be
written as x; = Hpx;—1 + Pgb,i=1,2,..., where

I3 £ s—1
Hy=> Ex(Rsx)*+B> Er | (Rsx) | Bi'N,
k=1 k=1 =0
4 s—1
Ps=5Y_ Ex| D (Rex) | By,
k=1 =0

where Rg . = 8B 'Cr + (1 — B)I. The Hp is called an iteration matriz for the
relaxed two-stage multisplitting method with a relaxation parameter 5 > 0 and s
inner iterations. Then, it can be shown that P3A = I — Hg and the relaxed two-
stage multisplitting method with a relaxation parameter 8 > 0 converges to the
exact solution of Az = b for any initial vector zg if and only if p(Hg) < 1. First,
we provide convergence result of the relaxed two-stage multisplitting method
using M-splittings.

Theorem 3.1. Let A € R™ ™ be an M -matriz and A = M —N be an M -splitting
of A. Let M = By, —Cy, be an M -splitting such that diag(By) = diag(M) = D for
each 1 <k </¥, and let B= D — M. Then, the relazed two-stage multisplitting
method using an outer splitting A = M — N and inner splittings M = By — Cy,
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k=1,2,...,¢, converges to the exact solution of Az = b for any initial vector
2
To if0< B < Tro where a = p(D~Y(B + N)).

Proof. For 0 < 8 < 1, this theorem follows directly from Theorem 2.1 since
M-splitting implies regular or weak regular splittings. Now we consider the case

2
fl< ——. Let
o ﬂ<1+a e

£ s—1

Hy = Y EBxHpy, Hpp=(Rox)*+8> (Rex)By'N,
k=1 j=0

- I3 _ _ _ s—1 B ]

Hy = Y ByHpy, Hpp=(Rpx) +B8 (Rox)By'N,
k=1 §=0

where Rg = BB, Ci + (1 — B)I and Ry = 8By 'Cr + (6 — 1)I. Let

_ﬁBk—C’k—Nandfig:ﬂD—B—N.

B

Aﬂ,k =

Since |Rg x| < Rgx, |Hpx| < Hpy and thus
|Hs| < Hp. (2)

Since A = D — (B+ N) = By — (Cx + N) are regular splittings of A and

2
BI:1 > D—l, p(Bk—l(Ck'FN)) < a < 1. Since 8 < ].+—Ol7 2ﬂ_—aﬁ < 1 and thus

I-Rgr=(2-0)I- BB; ' Cy, is nonsingular. Hence, one obtains
Hp i = (Rp)* + 5(1 - (Rﬂ,k)s)(l — Rox)T'B'N
=1- (I - (Rﬁ,k)s) I-p(I- Rﬂ,k)_lBk_lN)

=I- (1 — (Rpx)*) (I = Rp)™? (1 Ron - BBk‘lN)

8

|
s

= 1Y (Beuy ((2— AT - BB Ci - 8B 'N) (3)
3=0
s—1 ~ - 9 _ ,8
=1-3 (Rsr) B ( By — Cj — N)
=0 b
s—1

=1—-8) (Rpx) By Ap .
=0
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2
Let By, = D — Ej, for each k, where E;, > 0. Since 1 < 3 < TTa one obtains
@

. 2
Agp = ﬂﬂBk—Ck—N
2-p4 2-p
="""p_ Ep—Cp— N
g 5
2
> 2 Pp _p_ci-N (4)
5
2-p
=2""p-B-N
B
= A,@
. 3 2-p . o b
for each k. Since Ag = TD — (B + N) is a regular splitting of Ag and
2-’% <1, flgl > 0. Since Rg; and B; ! are nonnegative, from (3) and (4) one
obtains
s—1
Hgp <I-— 5Z(Rﬁ,k)jBk—1Aﬁ- (5)
§=0

Let e = (1,1,...,1)T and v = zfllgle. Then v > 0 and Bk"le > 0. Using these
relations and (5),

s—1
Hgpv<v— 5Z(Rg,k)jB,c—1€ <v-pBle<uw. (6)
7=0

From (6), there exists a 63 € [0,1) such that
Hg yv < O k0 (7)

for each k. Let 03 = max {Hg,k |1<k< f}. It is clear that 83 < 1. From (2)
and (7),
¢ ¢

[H,@I’U < ﬁﬁv = ZEkgﬁ,kU < Zelg’kEkv < fgv. (8)
k=1 k=1

From (8), p(|Hg|) < 63 < 1 and hence p(Hg) < g < 1for 1 < 3 <
Therefore, the proof is complete.

1+a
O

In Theorem 3.1, notice that 1 2 > 1since a < 1. It means that Theorem 3.1
o

can be viewed as an extension of Theorem 2.1. We next provide convergence
results of the relaxed two-stage multisplitting method using SOR multisplitting.

Theorem 3.2. Let A € R™*"™ be an M-matriz and A = M — N be an M-
splitting of A. Let M = D—B =D — L — Uy (1 <k <{), where D = diag(M),
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Ly > 0 is a strictly lower triangular matriz, and U > 0 is a general matriz,

and let (Bk(w), Cr(w), Ek), k=1,2,...,¢, be the SOR multisplitting of M.
Let o = max{max{p((Bk(w))'lck(w)) 11 <k < &, p(DV(B + N))}

Then, the relazed two-stage multisplitting method using an outer splitting A =

M — N and inner splittings M = Bp(w) — Cx{w), k = 1,2,...,{, converges
to the ezact solution of Az = b for aeny initial vector zo if 0 < w < 1 and

0<b<soa=a)

Proof. Since 0 < w < 1,itisclearthat a < 1. For0<w <1land 0 < 8 <1,
this theorem follows directly from Theorem 2.1 since both A = M — N and
M = By (w)—Cp(w) are regular splittings. Now we consider the case of 0 <w <1

d1 —_—
an <ﬁ<2—w(1—a) Let

Rguk = B(Bi(w))"'Cr(w) + (1 - B)I,
Rg ok = B(Br(w)) ' Cr(w) + (8 — DI,

£ s—1
Hp., = Z ExHg ok, Hpwrk = (Rpwk)’ +8 Z(Rﬁ,w,k)j(Bk(w))_lN,
k=1 =0
¢ - - s—1 . ‘
Hpw = EeHpup, Hpwr=Rowr) +8 (Rswr) (Be(w) ' N.
k=1 =0
Let
~ 2 — 5 _ 2
Apwk = ﬂBk(w) — Cr{w) — N and Ag,, = Q,ﬂﬁ—w—l-ﬂwD _B_N.
Since |Rgw,k| < Rﬂ,w,ka |Hgwi| < I:Ig,w,k and thus
|Hp ol < Hp o 9)
2 2 Ba

Since 3 < < 1and thus I — Rg ok = (2 — 8)I —

2—w(l ~a) = 1+4a’2-4
B(Bi(w))~1Cx(w) is nonsingular. Hence, one obtains

Hp ok = (Row ) +B(I = (Bowi)")(I = Rowp) ™ (Be(w)) ' N
=I— (T = (Rpup)) (1= BU = Rpup) *(Be(w) 'N)

1= (T~ (Rowr)*) (I = Row) ™ (I = Bows — B(Br@)'N) (10

-

= 1= S (Rpr (2 = B) — B(Bi(w)) " Cr(w) — B(Bu(w)) ™ N)

Jj=
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s—1

- , 9 _
= I - ﬂZ(Rg’w’k)J(Bk(w))—l < ﬁﬁBk(w) - Ck(w) — N)
7=0
s—1 . ) .
= I1-8Y (Bpwp) (Br(w) " Apup-

§=0
. 1 1
Since 8 > 1, Bi(w) = ;(D —wly) and Ci(w) = ;((1——w)D+WUk), one
obtains

~ _2-26+fw  2-8_
Aﬁ,w,k— ﬂw D ﬁ Ly, Uy — N
2-20+ fw
D—Ly—Ug—N
Buw BE (11)
2_2ﬂ+ﬂwD—B—N
fw
= A,@,w
. Bwa

f ) —_c 9_ —_— < 1.1
or each k. Since § < —w(l—a) 2—-20+ fw >0 and 2- 23+ fw <L It

2—-28+ fw
) _ B
thus AEL > 0. Since Rg ,,x and (Bg(w))™! are nonnegative, from (10) and (11)
one obtains

follows that Ag ,, = D — (B + N) is a regular splitting of Ag, and

s—1
Hpur £1-8) (Rgwr) (Be(w) ' Ape (12)
7=0
Let e = (1,1,...,1)T and v = Ag’i}e. Then v > 0 and (Bg(w))"te > 0. Using
these relations and (12),
s—1

Hppv <v— BZ(Rg,ka)j(Bk(w))_le <v—B(Brpw))te <. (13)
j=0

From (13), there exists a 0g ., € [0, 1) such that
f{,g’w’kv < 03,0,k (14)

for each k. Let 03, = max {05,%,c |1 <k < f}. It is clear that 05, < 1.
From (9) and (14),

¢ ¢
lH,B,wIU < f}@,wv = ZEkf{,@,w,k'U < Z@gw’kEkU < O, (15)
k=1 k=1
From (15), p(|Hg,w|) < s < 1 and hence p(Hg) < 0g0 < 1lfor0 <w <1

and 1< g < . Therefore, the proof is complete. O

2—-w(l—a)
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Theorem 3.3. Let A € R™ ™ be an M-matriz and A = M — N be an M-
splitting of A. Let M = D—B =D — Ly —~U, (1 <k <¥), where D = diag(M),
Ly > 0 is a strictly lower triangular matriz, and Uy > 0 is a general matriz,
and let (Bk(w), Cr(w), Ek), E=1,2,...,¢ be the SOR multisplitting of M.

Let § = p(D™'(B+ N)) and a = max {5, max{p ((Bx(w))}|Cr(w)]) |1 <

4 s—1
k< 5}}. Let Hoo = 3 Ex [ (Rpw)® + 8 (R (Be(w)™'N | be an
k=1 7j=0

iteration matriz of the relaxzed two-stage multisplitting method using an outer
splitting A = M — N and inner splittings M = By(w) — Cx(w), where Rg o i =
B(Br(w))'Cx(w) + (1 — B)I. Then the following hold.

2
I
(a) f1<w<1+6

(b) Ifw > 1 is chosen so that w(l+a) <2 and if 0 < B <
then p(Hg ) < 1.

and 0 < 8 <1, then p(Hg,) < 1.
2
w(l+a)’

A 2 N
Proof. Let M = Bi(w) — |Cr(w)] for 1 < w < 15 Then M = Bgp(w) —
wd

2 — N N
|Cr(w)| = Tw—D — B are regular splittings of M. Since ;*- < 1, M is an
M-matrix and thus a < 1. Let

Rg ok = B(Bi(w)) " Cr(w)| + (1 = B,

Rp e = B(Br(w) "M Cr(w)| + (8- 1)1,

s—1

Hg,. = ZEkHﬁw b Hpwk = (Rowi)® +8Y (Rpwr (Buw) ' N,
k=1 j=0
£ N - ~ s—1 . '
Hpow = ExHpup, Hpuwr=(Rpwr) +BY (Rowr) (Be(w) ' N
k=1 j=0

A .. 2
We first prove part (a). Let A= M—~N. Then A= M —N = TUJD—(B—{—N)

are regular splittings of A. Since <1, A is also an M-matrix. Since H, B,

can be viewed as an iteration matrlﬁ of the relaxed two-stage multlsphttlng
method usmg an outer splitting A =M — N and inner splittings M = By, (w) -

|Cy(w)|, p(Hp ) < 1is obtained from Theorem 2.1. Since it can be easily shown
that |Hp | < Ha.., p(Hp ) < 1. Next we prove part (b). Assume that w > 1 is
chosen so that w(1 + ) < 2. Then w(1+46) <2. For 0 < 8 < 1, p(Hpw) < 1is

directly obtained from part (a). Now we consider the case of 1 < 8 < m.
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Let

D—-B—-N.

2—-3 2 — Bw
Bw

Aﬁ,w,k = Bk(w) — |Ck(w)| — N and Ag’w =

2 _ 2
(1+a)  (1+4a)
— < L. It follows that I — Rg .k = (2= 8)] — B(Bi(w)) ' |Ci(w)]| is

nonsingular. Hence, one obtains

Since \R,B,w,kl < R,@,w,k, lHﬂ,WI < I:I,g’w. Sincew > 1, 8 < ”

Ba

and so

s—1

Hpwr =1-5Y (Rgwr) (Biw))  Apw. (16)
§=0

1
Since 8 > 1, Bil{w) = l(D — wl) and |Cx(w)] = = ((w = 1)D + wUy), one
w

w

obtains
e 2 - fw 2 —
Agw ik = ,Bwﬁ D— ﬁﬂLk—Uk—N
> 2 L Ui—N
Puw (17)
_2hph g
Bw
=As.
for each k. Since < —>—— 2~ fw > 0 and 2% < 1. Tt follows that
) w(l+a)’ v an 2 — fw '
. 9 _ - .
Ag. = ﬂfWD — (B + N) is a regular splitting of Ag,, and thus AE‘L > 0.
Since Rg,., % and (By(w))™" are nonnegative, from (16) and (17) one obtains
s—1
Hpur <T—=8Y (Rgwr) (Be(w) ' Ap (18)
j=0

Let e = (1,1,...,1)T and v = flg}}de. Then v > 0 and (By(w))"'e > 0. The
remaining part of the proof can be done in a similar way as was done in that of

2
Theorem 3.2. Hence, p(Hg,,) < 1 is obtained for 1 < 3 < o(ixa) Therefore,
the proof is complete. 0
Notice that 1 < L < 2 in Theorem 3.3. The following theorem is

1+a — 1+94
directly obtained by combining Theorems 3.2 and 3.3.
Theorem 3.4. Let A € R™™ be an M-matriz and A = M — N be an M-
splitting of A. Let M = D—B = D— Ly, — Uy, (1 < k <¥{), where D = diag(M),
Ly > 0 is a strictly lower triangular matriz, and Uy > 0 is o general matriz,
and let <Bk(w), Cr(w), Ek), k=1,2,...,¢, be the SOR multisplitting of M.
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Let § = p(D~Y(B + N)) and a = max {6, max{p ((Bk(w)) ! Cr(w)]) |1 <

4 s—1
k<) Let Hyo = Y B | (Rpws)* + B (RpwsV (Bu(w) "N | be an
k=1 =0

iteration matriz of the relazed two-stage multisplitting method using an outer
splitting A= M — N and inner splittings M = By(w) — Cr(w), where Rg .,k =
B(Br(w))Cr(w) + (1 — B)I. Then the following hold.

2
(a) If1<w< m and0<ﬂS 1, thenp(Hﬂ’w) <L

(b) If w > 0 is chosen so that w(l +a) <2 and if 0 < B <
then p(Hp ) < 1.

2
14+wa+ |1 —w|’

In Theorem 3.4, notice that if 0 < w < 1, then the condition w{1 + a) < 2 in
part (b) is automatically satisfied from the fact that o < 1.

4. Numerical experiments

In this section, we provide numerical experiments for the convergence of the
relaxed two-stage multisplitting method using SOR multisplitting as inner split-
tings. All numerical values are computed using MATLAB.

Example 4.1. Suppose that £ = 3. Consider an M-matriz A of the form

F —I 0 4 -1 0 1 0 0
A=|-I F -I|, F=]-1 4 -1|, I=]0 1 0
0 —-I F o -1 4 0 0 1
Let A= M — N, where
F 0 0 0o I 0
M=10 F 0], N=|I 0 I
0 0 F 0 I ©
Let D = diag(M), B=D — M,
0O 0 o0 0 1 0
Liz=11 0 0], Uu=]0 11,
6 0 O o 1 o0
0 0 0o 1
Liz=1]1 0 0], Uwz=1]0 0 1],
1 0 0 o0
L1 0 0 Lo 0 0 Li2 0 0
L1 = 0 le 0 y Lz - 0 L11 0 ) L3 = 0 L12 0 9

0 0 Lo 0 0 L2 0 0 Ln
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U1 0 0 Uis 0 0 Uiz 0 0
U, = 0 Uiz 0|, U= 0 Uy 0|, Us= 0 Uis 01,
0 0 U12 0 0 U12 0 0 U11
I 0 0 0 0 0 0 0 0
FEi=10 0 0], E2=1]0 1 0|, Es=]0 0 0
0 0 0 0 0 0 0 0 I

Then, A= M — N is an M-splitting of A and M = D— Ly — Uy, fork =1,2,3.
Let (Bi(w), Cx(w), Ex), k = 1,2,3, be the SOR multisplitting of M. That is,

1
By(w) = ;(D —wly) and Cr(w) = u—lj((l —w)D 4+ wUy) fork =1,2,3. Then

d, o and Hg, are defined as in Theorem 3.4.

Note that § = p(D~1(B+N)) ~ 0.7071 and % ~ 1.1716. For various values

of w, the numerical values of o, w(1+a) and m are listed in Table

1. Note that the upper bound of 3, which is ——————, becomes mazimum
1+ wa+]|1—uw|

when w = 1. When w > 1 and w(1 + a) < 2, the upper bound of 8 is greater

than 1, but it is close to 1. Numerical values of p(Hg,,) for various values of

w, B and s are listed in Table 2. For this test problem, p(Hga,,) is optimal when

w(l+ @) is close to 2 and 8 is close to its upper bound m,

TABLE 1. Numerical values of &, w(1 + «) and m for Example 4.1.
w o w(l+a) WZFW w o w(l+a@) Toarar
0.2 0.8683 0.3737 1.0133 1.0 0.7071 1.7071 1.1716
0.3 0.8006 0.5402 1.0308 1.1 0.7071 1.8778 1.0651
0.5 0.7071  0.8536 1.0790 115 0.7071 1.9632 1.0188
0.8 0.7071 1.3657 1.1327 1.17 0.7071 1.9973 1.0013
0.9 0.7071 1.5364 1.1518 1.18 0.7071 2.0144 0.9929
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TABLE 2. Numerical values of p(Hpg,,) for Example 4.1.

s w B pHpw)|s w B plHpw)|s w B p(Hpw)
1 02 08 09523 |2 02 08 0909 |3 02 08 08714
1.0 0.9404 1.0 0.8886 1.0 0.8436

1.01  0.9398 1.01  0.8875 1.01 0.8423

0.5 038 0.8773 05 0.8 0.7879 05 0.8 0.7226

1.0 0.8466 1.0 0.7452 1.0 0.6781

1.07 0.8359 1.07  0.7313 1.07 0.6645

0.8 0.8 0.7978 0.8 0.8 0.6858 0.8 0.8 0.6238

1.0 0.7472 1.0 0.6354 1.0 0.5860
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