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APPROXIMATION BY QUASI-INTERPOLATORY
COMPACTLY SUPPORTED BIORTHOGONAL WAVELET
SYSTEMS

JUNGHO YOON

ABSTRACT. A family of quasi-interpolatory wavelet system was introduced
in [10], extending and unifing the biorthogonal Coiffman wavelet system.
The corresponding refinable functions and wavelets have vanishing moment
of a certain order (say, L), which is a key property for data representation
and approximation . One of main advantages of this wavelet systems is
that we can get optimal smoothness in the sense of smoothing factors in the
scaling filters. In this paper, we first discuss the biorthogonality condition
of the quisi-interpolatory wavelet system. Then, we study the properties
of the scaling and wavelet filters, related to the polynomial reproduction
and the vanishing moment respectively, which in fact determines the ap-
proximation orders of biorthogonal projections. In addition, we discuss the
approximation orders of the wavelet projections.
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43A15
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1. Introduction

The discrete wavelet transform is a power tool for signal processing applica-
tions of many types of signals like seismic shaking, human speech, and music.
There are two main reasons for the success of this wavelet transform. First, it is
decomposed and reconstructed by the so-called Mallat’s Fast Wavelet Transform
[11]. Second, a good part of its success is due to the vanishing moment property
which leads to sparse representations for signals. The construction of classical
wavelets is now well-understood due to the pioneer works such as [1, 5, 6]. Many
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properties, such as symmetry {or antisymmetry), vanishing moments, regularity
and short support, are required in a practical use for application areas. It has
been well-known that orthogonality and symmetry are conflicting properties for
the design of compactly supported wavelets [6]. After the multiresolution anal-
ysis had been developed [11], most of useful wavelet functions are derived from
refinable functions; we say that ¢ is a refinable (or scaling) function if it satisfies
the refinement equation

$= arp(2-—k), (1.1)

kezZ

where a := {a} : k € Z} is usually called the mask for ¢. On the other hand, in
the context subdivsion, the sequence a in (1.1) is used as a rule in refinement
process of given control point to make a smooth curve. It can be written in
Fourier domain as

B(&) = mo(¢/2)d(/2) (1.2)
with

mo(§) := Z ane” /2. (1.3)
neZ

In signal and image processing, mg is called low-pass filter or scaling filter. The
function ¢ can also be reinterpreted as the basic limit function of a subdivi-
sion scheme, which is a powerful tool for curve and surface design in the com-
puter aided geometric design. Recently, there has been introduced a biorthogo-
nal wavelet systems based on quasi-interpolatory refinable function [10], which
means that it reproduces a certain polynomial space II; where N is an even
positive integer. The associated Laurent polynomial a(z) is of the form: putting

y =sin®&/2,

1 W N=1+n
mo(§) = 5(1 -y {2 Z ( )y" +w24N(‘1)NZ/N] . (1.4)
n=0 n

The primary goal of this paper is to characterize this symbol a(z). We study
the properties of this Laurent polynomial and the corresponding wavelet fil-
ters, related to the polynomial reproducing property and the vanishing moment
property respectively. Letting @(z) be the dual Laurent polynomial of a(z), we
especially relates the vanishing moment of the pair of the dual masks (a, a),
the pair of refinable functions (¢, é) and the corresponding biorthogonal wavelet

functions (say (¥, ¥)).

2. Quasi-interpolatory subdivision schemes

2.1. Subdivision scheme. In this section, we briefly introduce the relation
between subdivision and refinable function. Let f° = { fPeR:ne¢ Z} be
the initially given values. A subdivision scheme defines recursively new discrete
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values f*F = { ffeR:ne Z} on finer levels by linear sums of existing values
as follows:

=D aonff, ke, (2.1)
nez

where the sequence a = {a,, : n € Z} is termed the mask of the given subdivision.
We denote the rule at each level by S and have the formal relation

fE=5k50. (2.2)
Letting 69 := {6, 0 : n € Z}, the function
¢ := 86 € C(R)

is called the basic limit function of S and it satisfies the refinement equation
in (1.1) [9]. To simplify the following presentation of a refinable function (or
(the corresponding subdivision) and its analysis, it is convenient to introduce
the Laurent polynomial defined by

a(z) 1= anz", z€C\{0}. (2.3)

neEZ

The Laurent polynomial a(z) is also called the symbol of its corresponding re-
finable function ¢.

2.2. The mask of quasi-interpolatory subdivision scheme. A family of
our refinement masks is obtained by the requirement of reproducing polynomials
inllcp, L = 2N. We briefly review its construction process; for the details see
[2]. First, for the construction of the even and odd masks, we use the stencil of
L = 2N points to reproduce polynomials of degree < 2N. Let 8, £ =1,...,L,
be a basis of Il . Then, putting 7; = d;,1, the even and odd masks (j = 0, 1,
respectively)

aj::{aj,gn:n:—N—{—Tj,...,N}, ]6{0,1}

are obtained by solving the linear system which can be written in the matrix
form

a; =P 'ry, (2.4)
where
M(n, £) = B¢(n), r;(£) = ,[3@(2_173), je{0,1}.
If j = 0, this is an underdetermined system of L+1 unknowns in L equations, and

hence there is one degree of freedom which will be used as a tension parameter
w. Here and in the sequel, for convenience, we put w := aan.
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3. Compactly supported biorthogonal wavelets

3.1. Biorthogonal wavelet systems. The set {¢( —k):n¢€ Z} forms a
Riesz basis if and only if there exist constants A, B > 0 such that

A< g6 +2m)? < B, (3.1)
nez
We say that the function ¢ € Ly(R) is stable if (3.1) is satisfied. If the integer
translates of ¢ are linearly independent, the stability of ¢, is immediate. Let ¢ €
L>(R) be a stable refinable function with the symbol a(z) such that a(—1) =0
and a(1) = 2. The first step for the construction of biorthogonal wavelet systems
is to find a refinable function ¢ € Ly(R) such that

<¢, 3 — e)> =bos, L€ (3.2)
A necessary condition for ¢ and ¢ to satisfy the duality condition (3.2) is
aa + a(—)a(—) = 4. (3.3)

If ¢ is stable and satisfies the condition (3.2), we call ¢ the dual refinable function
of ¢ (or just dual of ¢). Let a(2) be the symbol of ¢ such that a(0) = 2 and
@(—1) = 0. Then, the refinement functions ¢ and ¢ are defined respectively by

6(¢) = [T rmoe/2). (3.4)

j=t

where
g (€) = ale™™)/2.

These infinite product in (3.4) converge absolutely and uniformly on compact
sets and is the Fourier transforms of compactly supported ¢ with their support
widths given by the filter lengths [1, 7]. Given a pair of dual refinable functions
¢ and ¢ with their associated filters mo(§) and mo(&), the dual wavelet functions
9 and 1 are defined via the relations

D) =mi(E/B(E/2),  P(E) = (E/2)$(E/2), (3.5)
where
mi1(§) = e *mo(E +7), Ma(€) = e “mo(€ + ). (3.6)
We will give a sufficient condition for 1 and 1 to be biorthognal wavelets asso-
ciated with ¢ and ¢.
Proposition 3.1. Let ¢ and ¢ be refinable functions whose symbols a(z) and
a(z) are respectively of the form

a(z) = (1 . Z)eb(z), a(z) = (1 ! z)li)(z) (3.7)
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for some ¢, ¢ € N, where b(z) and b(z) are Laurent polynomials such that b(1) =
b(1) = 2. Let
1 1/k ) = 1/k
B = max H F(§)| , B =max H F&| . (3.8)
R R
1. i 1. . _ ;
where F(£);= §b(e"€) and F(€) := §b(eﬂ€). Suppose that ByBy < 2¢+1

for some integers k,k > 0. Then if ¢,¢ € Lo(R), {6, ¢, 0,9} is a biorthognal
wavelet system.

Proof. Define u,, and 4, by
HmO(Qﬁjw) X[—w,ﬂ](2_nw)7

Similarly, define @,, with mg. Then u, and 4, converge pointwise to (f) and q}
respectively. Using the similar technique in Proposition 4.9 in [1] and applying
(3.3), it is easy to see the relation

nt1 n
/ " (W) (w)e = / o (H mo(z-ﬂ‘w)ﬁo(z—jw))ewwdw
. A u
= /00 U1 (W) i1 ()€™ duw.
Repeating this process yields the id;ntity
/ " (W) ()l = / " ()T () dw = 2780, (3.9)
. .

Hence, it suffices to show that w,(-)in(-) converges to ¢(-)é(-) in the sense of

L'-norm in order to prove / qb(:c)g(x — f)dx = dg¢. Since

ﬁ 1 +6—12 Jw H SlIl 2 ]’UJ _ Sin(2_1w)
j=1 2sin(2-71w) ~|9n sin(2—"—1w) s
we have
sin(27tw) " ] .
funw)] = m | F27w)| X[ mm (27"w), (3.10)

. ) 2
Similar relation we obtain for |&,(w)| by using F(277w). Since |sinw| > ;|w|

for [w| < 7/2, it is easy to see that

‘8111(2_"_1111)|_1 X[—mx(27"w) < g?”"‘l|w|_1
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Therefore, we arrive at, the relation
sin(271w)

sin(271w)
2msin(2-" " lw)

21w

n T _
’)q_m]@ w) < 3 ’50(1+1w|) L (3.11)

We now compute an upper bound for H F(279w). At w = 0, we have mq(0) =
j=1

1; so F'(0) = 1. Since F is a trigonometric polynomial, there exists C such that

|F(w)| < 1+ C1|w| for |w| < 1. Consequently, we have

n k23 o0
[T Fe7w)| < [[a+Ci27wl) < J[ 9271 < €. (3.12)
j=1 j=1 j=1

If |w|] > 1, then, for the given k in (3.8), there exists £y > 0 such that 2% <
lw| < 2%+ Write n = kn’ + ¢ with 0 < ¢ < k, and assume without loss of
generality that o < n'. Note that sup, |F(¢)| > 1, since F(0) = 1. Then, letting
G(w) = F27'w)F(2=2w) - - - F(2~*w), we obtain

[1 |c"w) ﬁ |G w).

j=0 j'=£o+1

ﬁ F(2 9w)| <

sup [F(C)]
=1 ¢

Since |2~ (bo+Dkqy| < 1, applying the same argument in (3.12) yields

n' n' —6s—1
II ’G(2_kjw)1: I ‘G(?‘kj2_(e°+1)kw)’§ecl. (3.13)
j=fo+1 Jj=0

Moreover, invoking the definition of By in (3.8), we have

Lo

II

=0

B}’:(fo-i-l) < B:+10g|w]/10g2 (3.14)

IA

G(2_kjw)’

< 02(1+|w|)10g3k/log2.

Hence, we arrive at the bound

[T FE7w)| < Cs(1 + fw])'os B/ 82, (3.15)
j=1

where the constant ¢ is independent of n. This together with (3.11) leads to the
estimate of u,, in (3.10) as follows:

[tn (w)| < D(1 + Jw|)~L+08 Br/ log2,
Next, with ch in (3.8), the estimate of |4, (w)| can be done similarly :

Iﬂ'n(w)l < D(1+ |w|)—L+logE,~c/log2‘
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Thus, since By, Bj, < 2L+E~1 by assumption, it is obvious that

SUp |t (w)iin (w)] < E(1 4 |w|) L= LHos(BeBr)/los2 ¢ [1(R),

Since u,, — <2>q~5 pointwise as n tends to oo, by the Lebesgue dominated con-

vergence theorem, we have the convergence property |u,t, — (;3(5” Lir) — 0 as
n — 0o. Therefore, from (3.9) we get the required result.

4. Approximation order and vanishing moment

The following theorem treats the relations between dual (refinable, wavelet)
functions and dual symbols. Some of them may be already well-known in the

literature. But, we clarify all the relations together. For this, we use the nota-
tion.

Theorem 4.1. Let {(;5, b, 1/1,1/;} be a biorthognal wavelet system as in the pre-
vious section and their symbols are of the form

a(z) = (1+2)"b(2), a(2) = (1+2)"b(2),

where b(z) and b(z) are Laurent polynomials such that b(—1) # 0 and b(—1) # 0.
Then, the following conditions are equivalent:
(1) For any p € Ty, Z aj—2np(n) = p(j/2) with j =0, 1.
nEL
(2) For anyp €Ty, » G 2np(n) =p(j/2) with j =0, 1.
nez
(3) The refinable function ¢ and the wavelet 1) have the vanishing moments
of order L:

/d)(t)tzdt =80z

p (4.1)

/w(t)t"dtzo, Ve=0,...,L—1.
R

(4) The dual functions ¢ and ¥ have the vanishing moments of order L:

/ d(t)tldt = 8o, and
R (4.2)

/z/i(t)tfdtzo, Ve=0,...,L—1.
R

Proof. The proof of this theorem will be done in the following way: (1) = (4)
= (2) = 3) = (1).

(1) = (4): Since ¢ is the basic limit function of the subdivision scheme with the
mask {an}nez, the polynomial reproducing property in (1) is equivalent to the
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case of the refinable function ¢. Hence, by some elementary calculations, it is
immediate that for any £ =0,...,L — 1,

tf = Z é(t —n)nt.
neZ

Now, in order to prove the vanishing moment property of the refinable function
¢, we apply the duality condition (3.2), that is., {¢, ¢(- — n)) = &, for n € Z.
It yields that

s()tldt = [ ¢ —n)nt
[ dwrtar= [ 563 o mn‘a

nez

= Z nt /R d(t)p(t — n)dt = dp 0.

nez

forall £=0,...,L ~ 1. In a simlilar way, using the orthogonality condition
(¥, ¢(- — n)) = 0, we can show that

TNl g 2 _n
/R d(eytdt =3 /R BE)o(t — n)dt

nez

foral £=0,...,L —1.
(4) = (2) Let a(z) be the Laurent polynomial associated to the dual refinable

a(z) = Z an2".

function ¢, i.e.,
n€Z

By applying the refinement equation ¢ = Y onez &nq;(- —n) to (4.2), we can easily

obtain that
> annt = an / (2t — n)thdt = 28,9
R

nez nez
with £=0,..., L — 1. It implies the identity
a®(1) =269, £=0,...,L—1. (4.3)

By construction, @¥)(—=1) = 0 for any £ =0,..., L — 1. Thus combining it with
(4.3), the statement (2) is proved. (2) = (3) and (3) = (1) : The proof can be
done similarly as (1) = (4) and (4) = (2). a

A biorthogonal wavelet system with compact support is called a biorthogonal
Coifman wavelet system for degree L if the synthesis refinable function ¢ and the
dual wavelets 1 and v have the vanishing moments L, that is, foralln =0, ..., L,

A

¢™ =8y and P = =0. (4.4)
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Remark 4.2. It is easy to see that the vanishing moment of order L of ¢ (and
¢) in (4.1) implies the polynomial reproducing property of degree < L, i.e., in
the sense that

/R o(-— p(t)dt =p, pelly.

The following proposition estimates the size of |{f, z/N)Jk>| In particular, our
approximaion spaces are chosen from the Sobolev space

WEQ) =1 fllwg == {f € Ly(R) s |F Pl < o0} (4.5)

Proposition 4.3. Let ¢ be the refinable function with its symbol in (1.4) and
let {¢, ¢, v, v} be a corresponding biorthgonal wavelet system. Assume that f €

WL (R). Then, for any fited j €N and k € Z,
(il < 273t | 1]

La(By—;, (2-9K))

Proof. Tt is clear that for any 4,k € Z,
P12 550 =07 [ f0da)de
_ / FRTIP(E ~ k)t
R

Let T7, f be the Taylor polynomial of f of degree L — 1 around ¥ = 277k and
Rp f be its remainder. Since 1 has the vanishing moment of order L,

[ 2@ 000 = .
R
Then we get

VI3 ) = / (F279¢) — Ty f(2790))(t — k)dt
R

- /R Ry f(t)i(t — k)dt.

Note that the remainder Ry, f is of the form

Rpf(t) = 2—”&—‘_'%); /0 1=y  f BTk +y(t —277k))dy.

Thus, it follows that

12072(f, 9 k)| < c27IE Hf(L)I

t— k)Xt — k)| %dt.
. /R (¢ — K)(t — k)

Since 9 is compactly supported, / I(t — k)E4(t — k)|?dt < oo, which completes
R
the proof. U
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Corollary 4.4. Let ¢ be the refinable function with its symbol in (1.4) and let

{o, q~5, P, 1/:} be a corresponding biorthgonal wavelet system. Assume that f €
W4(R). Then, for any fived j €N and k € Z,

1/2
<|Z<f,d3j,k>l2> =0(277%).

keZ

For a pair of biorthogonal wavelets 1 and 1/;, we define an approximation to
the wavelet projection Q;f € W; :=span{y; : k € Z} by

Qif = Fiavik
keZ

where

Fie =D (=D*ar o f(k279).

kZ
The next theorem treats the accuracy of this approximation.

Theorem 4.5. Let ¢ be the refinable function with its symbol in (1.4) and let
{(b, q~5, w,d;} be a corresponding biorthgonal wavelet system. Assume that f €
WL (R). Then, for any j €N and k € Z,

* | <9Il ” <L>H _
|fJ,k| =cC f Loo(B,—s.(2-7K))

Proof. Due to Thereom 4.1, we find the relation
D (D aran® =" a1-2a(20)% = Y a_24(20)* =0
n€Z n€Z n€EZ

because each summation on the righthand side of the above identity has the
value (—1)®. It implies that

Y (D) a1_np(n) =0
nez

for any polynomial of degree< L. Now, take T}, f as the Taylor polynomial of f
of degree L — 1 around ¥ = 277k. Then,

Z(*l)"al—nTLf(/ﬂ_j) =0.

nez

By using the same argument of Proposition 4.3, we get the required result. O
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