Seafloor Sediment Classification Using Nakagami Probability Density Function of Acoustic Backscattered Signals

음향후방산란신호의 나카가미 확률밀도함수를 이용한 해저퇴적물 분류

  • 복태훈 (제주대학교 해양과학대학 해양정보시스템공학과) ;
  • 팽동국 (제주대학교 해양과학대학 해양정보시스템공학과) ;
  • 박요섭 (한국해양연구원 해양위성.관측기술연구부) ;
  • 공기수 (한국지질자원연구원 석유해저자원연구부) ;
  • 박수철 (충남대학교 자연과학대학 해양학과)
  • Published : 2009.04.30

Abstract

The physical properties of a seafloor sediment have been used as a basic data for the ocean survey. Conventional methods such as a coring, a drilling, and a grabbing have been used to explore the physical properties but these methods have a number of shortcomings as it is time consuming, expensive and spatially limited. To overcome these limitations, seafloor sediment classification using acoustic signals has been studied actively. In this paper, we obtained the backscattered signal from the seafloor sediment using an echo sounder which is one kind of seafloor topography equipment. Nakagami probability density function of the backscattered signals from the seafloor sediment was computed and a Nakagami parameter was compared with the physical properties of the seafloor sediment. We have confirmed that Nakagami parameter, m is correlated with the physical properties of a seafloor sediment. This study will be utilized as a basic data of the seafloor sediment research.

해양 탐사에 있어서 해저퇴적물의 물성을 파악하는 것은 해양 연구의 기초 자료로써 활용되고 있다. 이러한 해저퇴적물의 물성을 파악하기 위해서는 시추를 통한 직접적인 방법이 있지만 경제적, 시간적 손실이 크고 공간적인 한계가 있다. 이에 음향 장비를 이용한 해저퇴적물 분류 연구가 활발히 진행 중에 있다. 본 논문에서는 해저 지형 조사 장비의 일종인 음향측심기에 의한 음향 신호의 나카가미(Nakagami) 분포를 분석하여 해저퇴적물의 특성을 분류하는 연구를 수행하였다. 나카가미 변수인 m 값의 변화에 따라 해저퇴적물의 물리적 특성이 달라지는 것을 확인하였고, 이는 해저퇴적물특성 연구의 기초자료로 활용되리라고 여겨진다.

Keywords

References

  1. A. H. Bouma and N. F. Marshall, “A method for obtaining and analysing undisturbed oceanic sediment samples,” Marine Geology, vol. 2, no. 1-2, pp. 81-99, 1964 https://doi.org/10.1016/0025-3227(64)90028-3
  2. D. T. Smith and W.N. Li, "Echo-sounding and sea-floor sediments," Marine Geology, vol. 4, no. 5,pp. 353-364, 1966 https://doi.org/10.1016/0025-3227(66)90039-9
  3. N. C. Smoot, “Guyots of the Mid-Emperor Chain mapped with multibeam sonar,” Marine Geology,vol. 47, no. 1-2, pp. 153-163, 1982 https://doi.org/10.1016/0025-3227(82)90024-X
  4. William L. Bandy, F. Michaud, J. Dyment, C. A. Mortera-Gutierrez, J. Bourgois, T. Calmus, M. Sosson, J. Ortega-Ramirez, J.-Y. Royer, B. Pontoise and B. Sichler, "Multi-beam bathymetry and sidescan imaging of the Rivera Transform-Moctezuma Spreading Segment junction, nor-thern East Pactific Rise: New constraints on Rivera-Pacific relative plate motion," Tectonophysics, vol. 454, no. 1-4, pp. 70-85,2008 https://doi.org/10.1016/j.tecto.2008.04.013
  5. R. Urgeles, J. Locat, T. Schmitt, and J. E. H. Clarke, "The July 1996 flood deposit in the Saguenay Fjord, Quebec, Canada: implications for sources of spatial and temporal backscatter variations," International Journal of Marine Geology, vol. 184, pp. 41-60, 2002 https://doi.org/10.1016/S0025-3227(01)00303-6
  6. V. E. Kostyler, “Stock evaluation of giant scallop (Placo-pecten magellanicus) using high-resolution acoustics for seabed mapping,” Fisheries Research, vol. 60, pp. 479-492, 2003 https://doi.org/10.1016/S0165-7836(02)00100-5
  7. 석봉출, 3차원 해저 수치지형 모델에 관한 연구 - 1차년도 결과보고서, 국방과학연구소, ATRC-408-93841, 1994
  8. 김길영, 김대철, 김양은, 이광훈, 박수철, 박종원, 서영교, "측심기의 음향반사 특성을 이용한 해저퇴적물의 원격분류: 부산 수영만의 예비결과," 한국수산학회지, 35권, 3호, 273-264쪽, 2002 https://doi.org/10.5657/kfas.2002.35.3.273
  9. 정태진, $황해종합조사(해저지질{\cdot}자원조사)$ - 연구보고서, 과학기술부, 2000-N-LO-01-A-03, 2001
  10. L. Hellequin and J. M. Boucher, "Processing of High-Frequency Multibeam Echo Sounder Data for Seafloor Characterization," IEEE Oceanic Engineering, vol. 28, no. 1, pp. 78-89, 2003 https://doi.org/10.1109/JOE.2002.808205
  11. C.-S. Maroni, A. Quinquis and E Radoi, “A methodology for neural network based classification of marine sediments using a subbottom profiler,” OCEANS '97 MTS/IEEE Con-ference Proceedings, vol, 2, pp. 1370-1375, 1997 https://doi.org/10.1109/OCEANS.1997.624195
  12. B. Langli and J.-C. Le Gac, "The first results with a new multibeam subbottom profiler," OCEANS '04. MTTS/IEEE TECHNO-OCEAN '04 vol. 2, pp. 1147-1153, 2004 https://doi.org/10.1109/OCEANS.2004.1405671
  13. G. Theuillon, Y. Stephan and A. Pacault, "High-Resolution Geoacoustic Characterization of the Seafloor Using a Su-bbottom Profiler in the Gulf of Lion," IEEE Journal of Oceanic Engineering, vol. 33, no. 3, pp. 240-254, 2008 https://doi.org/10.1109/JOE.2008.926958
  14. C. M, McKinny and C. D. Anderson, "Measurement of backscattering of sound from the ocean Bottom," Journal of the Acoustical Society of America, vol. 36, pp. 158-163, 1964 https://doi.org/10.1121/1.1918927
  15. C. S. Clay, “Coherent reflection of sound from the ocean bottom,” Journal of Geophysical Research, vol. 71, pp. 2037-2044, 1966 https://doi.org/10.1029/JZ071i008p02037
  16. L. Hampton, Physics of Sound in Marine Sediments, Plenum, New York, pp.319-335, 1974
  17. A. D. Dunsiger, N. A. Cochrane and W. J. Vettor, "Seabed characterization from broad-band acoustic echosounding with scattering models," IEEE Journal of Ocean Engineering, vol. 6, pp. 94-107, 1981 https://doi.org/10.1109/JOE.1981.1145492
  18. T. K. Stanton, “Sonar estimates of seafloor microroughness," Journal of the Acoustical Society of America, vol. 75, pp. 809-818, 1984 https://doi.org/10.1121/1.390590
  19. B. Chakraborty, “Effects of scattering due to seatloor mic-rorelief on a multifrequency-sonar seabed profiler,” Journal of the Acoustical Society of America, vol. 85. pp. 1478-1481, 1989 https://doi.org/10.1121/1.397348
  20. M. Nakagami. “The m-Distribution, a general formula of intensity of rapid fading,” in Statistical Methods in Radio Wave Propagation: Proceedings of a Symposium held June 18-20, 1958, edited by W. C. Hoffman, pp. 3-36. Permagon Press, New York, 1960
  21. J. McManus, "Grain size determination and interpretation," in Techniques in Sedimentology, edited by M. E. Tucker, pp.63-85, Blackwell, Oxford, 1988
  22. (주)UST21, 군장대교 건설공사 턴키 지반조사(2차 해양탄성파 반사법 탐사 조사) - 결과보고서, UST21, 2006