DOI QR코드

DOI QR Code

A Study on the Characteristics of Tropical Cyclone Passage Frequency over the Western North Pacific using Empirical Orthogonal Function

경험적 직교함수를 이용한 북서태평양 열대저기압의 이동빈도 특성에 관한 연구

  • Choi, Ki-Seon (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kang, Ki-Ryong (National Typhoon Center/Korea Meteorological Administration) ;
  • Kim, Do-Woo (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Hwang, Ho-Seong (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Lee, Sang-Ryong (Department of Earth Environment System, Pusan Nantional University)
  • 최기선 (부경대학교 환경대기과학과) ;
  • 강기룡 (기상청 국가태풍센터) ;
  • 김도우 (부경대학교 환경대기과학과) ;
  • 황호성 (부경대학교 환경대기과학과) ;
  • 이상룡 (부산대학교 지구환경시스템학부)
  • Received : 2009.06.29
  • Accepted : 2009.09.18
  • Published : 2009.10.30

Abstract

A pattern of tropical cyclone (TC) movement in the western North Pacific area was studied using the empirical orthogonal function (EOF) and the best track data from 1951 to 2007. The independent variable used in this study was defined as the frequency of tropical cyclone passage in 5 by 5 degree grid. The $1^{st}$, $2^{nd}$ and $3^{rd}$ modes were the east-west, north-south and diagonal variation patterns. Based on the time series of each component, the signs of first and second mode changed in 1997 and 1991, respectively, which seems to be related to the fact that the passage frequency was higher in the South China Sea for 20 years before 1990s, and recent 20 years in the East Asian area. When the eigen vectors were negative values in the first and second modes and TC moves into the western North Pacific, TC was formed mainly at the east side relatively compared to the case of the positive eigen vectors. The first mode seems to relate to the pressure pattern at the south of Lake Baikal, the second mode the variation pattern around $30^{\circ}N$, and the third mode the pressure pattern around Japan. The first mode was also closely related to the ENSO and negatively related to the $Ni\tilde{n}o$-3.4 index in the correlation analysis with SST anomalies.

북서태평양에서 발생하는 열대 저기압의 이동경로에 대한 변화패턴을 1951-2007년의 열대 저기압 경로 자료에 경험적 직교함수(Empirical Orthogonal Function, EOF)법을 적용하여 분석하였다. 북서태평양을 $5^{\circ}\times5^{\circ}$의 격자간격으로 나뉘어 연별 열대 저기압의 이동빈도를 각 격자에서의 변수로 정의하였다. 첫번째 모드는 동서성분(동경125도 기준)을, 두번째 모드는 남북성분(필리핀 동쪽해상에서 남지나해를 가로지르는 축 중심)을, 그리고 세번째 모드는 대각성분(타이완 동쪽 해상을 중심으로 동북방향과 동남방향을 축으로 하는)으로 나누어짐을 알 수 있었다. 첫번째와 두번째 모드의 주성분 시계열에서 각각 1997년과 1991년 부근을 기점으로 해서 주성분들의 부호가 교차되는 데, 이는 1990년대 이전 약 20년 동안에 남중국해 부근지역에서의 열대 저기압 이동 빈도가 동아시아 중위도 지역에서는 최근 20년 동안에 더 높았던 것과 관련성이 있는 것으로 보였다. 열대 저기압 발생의 경우, 첫번째와 두번째 모드에서 고유벡터 값이 음이고 진로가 북서태평양으로 주로 이동했던 열대 저기압은 고유벡터가 양의 값을 보였던 열대 저기압보다 더 동쪽에서 발생했던 것으로 나타났다. 이동특성에 있어 첫번째 모드는 바이칼호 남쪽에서 형성되는 기압 패턴에, 두번째 모드는 $30^{\circ}N$ 부근을 중심으로 남과 북 사이에 형성된 진동패턴에, 세번째 모드는 일본 부근에 위치한 기압패턴에 의해 열대 저기압의 이동경향이 많은 영향을 받는 것을 알 수 있었다. 또한, 해수면 온도 아노말리 값과 상관분석결과 첫번째 모드는 $Ni\tilde{n}o$-3.4 지수와 높은 음의 상관관계를 보여 ENSO의 영향을 받고 있음을 알 수 있었다.

Keywords

References

  1. Camargo, S.J. and Robertson, A.W., 2007, Cluster analysis of typhoon tracks. Part I: General Properties. Journal of Climate, 20, 3635-3653 https://doi.org/10.1175/JCLI4188.1
  2. Chan, J.C.L, 1994, Prediction of annual tropical cyclone activity over the western North Pacific and the South China Sea. International Journal of Climatology, 15, 1011-1019 https://doi.org/10.1002/joc.3370150907
  3. Elsner, J.B. and Liu, K.B., 2003, Examining the ENSOtyphoon hypothesis. Climate Research, 25, 43-54 https://doi.org/10.3354/cr025043
  4. Harr, P.A. and Elsberry, R.L., 1991, Tropical Cyclone Track Characteristics as a Function of Large-Scale Circulation Anomalies. Monthly Weather Review, 119, 1448-1468 https://doi.org/10.1175/1520-0493(1991)119<1448:TCTCAA>2.0.CO;2
  5. Harr, P.A. and Elsberry, R.L., 1995a, Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Monthly Weather Review, 123, 1225-1246 https://doi.org/10.1175/1520-0493(1995)123<1225:LSCVOT>2.0.CO;2
  6. Ho, C.H., Baik, J.J., Kim, J.H., and Gong, D.Y., 2004, Interdecadal changes in summertime typhoon tracks. Journal of Climate, 17, 1767-1776 https://doi.org/10.1175/1520-0442(2004)017<1767:ICISTT>2.0.CO;2
  7. Hodanish, S. and Gray, W.M., 1993, An observational analysis of tropical cyclone recurvature. Monthly Weather Review, 121, 2665-2689 https://doi.org/10.1175/1520-0493(1993)121<2665:AOAOTC>2.0.CO;2
  8. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D., 1996, The NCEP/NCAR 40-Year reanalysis project. Bulletin of American Meteorological Society, 77, 437-471 https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  9. Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., Dool, H., Jenne, R., and Fiorino, M., 2001, The NCEP/NCAR 50-year reanalysis. Bulletin of American Meteorological Society, 82, 247-267 https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
  10. Kim, J.H., Ho, C.H., Sui, C.H., and Park, SK., 2005, Dipole Structure of Interannual Variations in Summertime Tropical Cyclone Activity over East Asia. Journal of Climate, 18, 5344-5356 https://doi.org/10.1175/JCLI3601.1
  11. Lander, M.A., 1996, Specific tropical cyclone track types and unusual tropical cyclone motions associated with reverse-oriented monsoon trough in the western North Pacific. Weather and Forecasting, 11, 170-186 https://doi.org/10.1175/1520-0434(1996)011<0170:STCTTA>2.0.CO;2
  12. Liu, K.S. and Chan, J.C.L., 2008, Interdecadal variability of western North Pacific tracks. Journal of Climate, 21, 4464-4476 https://doi.org/10.1175/2008JCLI2207.1
  13. Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., and Wang, W., 2002, An improved in situ and satellite SST analysis for climate. Journal of Climate, 15, Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., and Wang, W., 2002, An improved in situ and satellite SST analysis for climate. Journal of Climate, 15, 1609-1625 https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
  14. Sik, K. and Chan, J.C.L., 2008, Interdecadal Variability of Western North Pacific Tropical Cyclone Tracks. Journal of Climate, 21, 4464-4476 https://doi.org/10.1175/2008JCLI2207.1
  15. Wang, B. and Chan, J.C.L., 2002, How strong ENSO events affect tropical storm activity over the western North Pacific. Journal of Climate, 15, 1643-1658 https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
  16. Xie, L. and Yan, T., 2007, West North Pacific typhoon track patterns and their potential connection to Tibetan Plateau snow cover. Natural Hazards, 42, 317-333 https://doi.org/10.1007/s11069-006-9087-9

Cited by

  1. Decadal Change of Frequency in Korea Landfalling Tropical Cyclone Activity vol.33, pp.1, 2012, https://doi.org/10.5467/JKESS.2012.33.1.49
  2. Possible Relationship between NAO and Western North Pacific Typhoon Genesis Frequency vol.34, pp.3, 2013, https://doi.org/10.5467/JKESS.2013.34.3.224
  3. An Analysis of Model Bias Tendency in Forecast for the Interaction between Mid-latitude Trough and Movement Speed of Typhoon Sanba vol.34, pp.4, 2013, https://doi.org/10.5467/JKESS.2013.34.4.303
  4. Multiple Linear Regression Model for Prediction of Summer Tropical Cyclone Genesis Frequency over the Western North Pacific vol.34, pp.4, 2013, https://doi.org/10.5467/JKESS.2013.34.4.336
  5. Possible Influence of Western North Pacific Monsoon on Tropical Cyclone Activity Around Korea vol.36, pp.1, 2015, https://doi.org/10.5467/JKESS.2015.36.1.68
  6. Synoptic Analysis on the Trend of Northward Movement of Tropical Cyclone with Maximum Intensity vol.36, pp.2, 2015, https://doi.org/10.5467/JKESS.2015.36.2.171
  7. The Intensification of Walker Circulation over the Past 15 Years from 1999 and Its Relation to TC Activity in the Western North Pacific vol.37, pp.6, 2016, https://doi.org/10.5467/JKESS.2016.37.6.359