On Interval-Valued Fuzzy Weakly m^* -continuous Mappings on Interval-Valued Fuzzy Minimal Spaces

Won Keun Min¹ and Myeong Hwan Kim²

¹ Department of Mathematics, Kangwon National University, Chuncheon, 200-701, Korea

² Department of Mathematics, Kangwon National University, Chuncheon, 200-701, Korea

Abstract

In this paper, we introduce the concept of IVF weakly m^* -continuous mappings on between IVF minimal spaces and investigate some characterizations for such mappings. Also we study the relationships IVF weakly m^* -continuous mappings and IVF M-compactness.

Key Words : IVF minimal space, IVF weakly m^* -continuous, IVF M-compact, almost IVF M-compact, nearly IVF M-compact

1. Introduction

Zadeh [5] introduced the concept of fuzzy set and investigated basic properties. Gorzalczany [1] introduced the concept of interval-valued fuzzy set which is a generalization of fuzzy sets. In [2], the author introduced and studied IVF minimal structures and IVF minimal spaces as a generalization of interval-valued fuzzy topology introduced by Mondal and Samanta [4]. The author [2] introduced the concepts of interval-valued fuzzy mcontinuity and interval-valued fuzzy m-open mappings defined on between IVF minimal spaces. And we studied some characterizations and basic properties of such mappings. In this paper, we introduce the concept of IVF weakly m^* -continuous mappings and study some characterizations. Also we investigate the relationships IVF weakly m^* -continuous mappings and several types of IVF *M*-compactness.

2. Preliminaries

Let D[0, 1] be the set of all closed subintervals of the interval [0, 1]. The elements of D[0, 1] are generally denoted by capital letters M, N, \cdots and note that $M = [M^L, M^U]$, where M^L and M^U are the lower and the upper end points respectively. Especially, we denote $\mathbf{0} = [0, 0], \mathbf{1} = [1, 1]$, and $\mathbf{a} = [a, a]$ for $a \in (0, 1)$. We also note that

(1) For all $M, N \in D[0, 1]$,

$$M = N \Leftrightarrow M^L = N^L, M^U = N^U.$$

(2) For all $M, N \in D[0, 1]$,

$$M \le N \Leftrightarrow M^L \le N^L, M^U \le N^U$$

For every $M \in D[0, 1]$, the complement of M, denoted by M^c , is defined by $M^c = \mathbf{1} - M = [1 - M^U, 1 - M^L]$.

Let X be a nonempty set. A mapping $A: X \to D[0, 1]$ is called an interval-valued fuzzy set (simply, IVF set) in X. For each $x \in X$, A(x) is a closed interval whose lower and upper end points are denoted by $A(x)^L$ and $A(x)^U$, respectively. For any $[a, b] \in D[0, 1]$, the IVF set whose value is the interval [a, b] for all $x \in X$ is denoted by [a, b]. In particular, for any $a \in [a, b]$, the IVF set whose value is $\mathbf{a} = [a, a]$ for all x X is denoted by simply \tilde{a} . For a point $p \in X$ and for $[a, b] \in D[0, 1]$ with b > 0, the IVF set which takes the value [a, b] at p and $\mathbf{0}$ elsewhere in Xis called an interval-valued fuzzy point (simply, IVF point) and is denoted by $[a, b]_p$. In particular, if b = a, then it is also denoted by a_p . Denoted by IVF(X) the set of all IVF sets in X.

For every $A, B \in IVF(X)$, we define

$$\begin{split} A &= B \Leftrightarrow (\forall x \in X)([A(x)]^L = [B(x)]^L \text{ and } \\ & [A(x)]^U = [B(x)]^U), \\ A &\subseteq B \Leftrightarrow (\forall x \in X)([A(x)]^L \subseteq [B(x)]^L \text{ and } \\ & [A(x)]^U \subseteq [B(x)]^U). \end{split}$$

The complement A^c of A is defined by, for all $x \in X$,

$$[A^{c}(x)]^{L} = 1 - [A(x)]^{U}$$
 and $[A^{c}(x)]^{U} = 1 - [A(x)]^{L}$.

For a family of IVF sets $\{A_i : i \in J\}$ where J is an index set, the union $G = \bigcup_{i \in J} A_i$ and $F = \bigcap_{i \in J} A_i$ are defined by

Manuscript received Aug. 8. 2008; revised Dec. 5. 2008. Corresponding Author : wkmin@kangwon.ac.kr (Won Keun Min)

$$\begin{array}{ll} (\forall x \in X) \; ([G(x)]^L = \sup_{i \in J} [A_i(x)]^L, \\ & [G(x)]^U = \sup_{i \in J} [A_i(x)]^U), \\ (\forall x \in X) \; ([F(x)]^L = \inf_{i \in J} [A_i(x)]^L, \\ & [F(x)]^U \; = \; \inf_{i \in J} [A_i(x)]^U), \; \text{respective} \end{array}$$

tively.

Let $f: X \to Y$ be a mapping and let A be an IVF set in X. Then the image of A under f, denoted by f(A), is defined by

$$[f(A)(y)]^{L} = \begin{cases} \sup_{f(x)=y} [A(x)]^{L}, & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise}, \end{cases}$$
$$[f(A)(y)]^{U} = \begin{cases} \sup_{f(x)=y} [A(x)]^{U}, & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise}, \end{cases}$$

for all $y \in Y$.

Let B be an IVF set in Y. Then the inverse image of B under f, denoted by $f^{-1}(B)$, is defined by

 $([f^{-1}(B)(x)]^L = [B(f(x))]^L, \ [f^{-1}(B)(x)]^U = [B(f(x))]^U) \text{ for all } x \in X.$

Definition 2.1 ([2]). A family \mathcal{M} of interval-valued fuzzy sets in X is called an *interval-valued fuzzy minimal structure* on X if

 $0, 1 \in \mathcal{M}.$

In this case, (X, \mathcal{M}) is called an *interval-valued fuzzy minimal space* (simply, *IVF minimal space*). Every member of \mathcal{M} is called an IVF *m*-open set. An IVF set *A* is called an IVF *m*-closed set if the complement of *A* (simply, A^c) is an IVF *m*-open set.

Let (X, \mathcal{M}) be an IVF minimal space and A in IVF(X). The IVF minimal-closure of A [2], denoted by mCl(A), is defined as

 $mCl(A) = \cap \{B \in IVF(X) : B^c \in \mathcal{M} \text{ and } A \subseteq B\};$

the IVF minimal-interior of A [2], denoted by mInt(A), is defined as

 $mInt(A) = \cup \{B \in IVF(X) : B \in \mathcal{M} \text{ and } B \subseteq A\}.$

Theorem 2.2 ([2]). Let (X, \mathcal{M}) be an IVF minimal space and A, B in IVF(X).

(1) $mInt(A) \subseteq A$ and if A is an IVF m-open set, then mInt(A) = A.

(2) $A \subseteq mCl(A)$ and if A is an IVF m-closed set, then mCl(A) = A.

(3) If
$$A \subseteq B$$
, then $mInt(A) \subseteq mInt(B)$ and
 $mCl(A) \subseteq mCl(B)$.
(4) $mInt(A) \cap mInt(B) \supseteq mInt(A \cap B)$ and
 $mCl(A) \cup mCl(B) \subseteq mCl(A \cup B)$.
(5) $mInt(mInt(A)) = mInt(A)$ and
 $mCl(mCl(A)) = mCl(A)$.
(6) $\mathbf{1} - mCl(A) = mInt(\mathbf{1} - A)$ and $\mathbf{1} - mInt(A) = mCl(\mathbf{1} - A)$.

Definition 2.3 ([2]). Let (X, \mathcal{M}_X) be an IVF minimal space and let (Y, \mathcal{M}_Y) be an IVF topological space. Then

 $f : X \to Y$ is said to be *interval-valued fuzzy m*continuous (simply, IVF *m*-continuous) if for every $A \in \mathcal{M}_Y$, $f^{-1}(A)$ is in \mathcal{M}_X .

Definition 2.4 ([2]). Let (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) be two IVF minimal spaces. Then $f : X \to Y$ is called *intervalvalued fuzzy minimal open* (simply, IVF *m*-open) map if for every $A \in \mathcal{M}_X$, f(A) is in \mathcal{M}_Y .

Theorem 2.5 ([2]). Let $f : X \to Y$ be a function on two IVF minimal spaces (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . (1) f is IVF *m*-open.

(2) $f(mInt(A)) \subseteq mInt(f(A))$ for $A \in IVF(X)$. (3) $mInt(f^{-1}(B)) \subseteq f^{-1}(mInt(B))$ for $B \in IVF(Y)$. Then $(1) \Rightarrow (2) \Leftrightarrow (3)$.

3. IVF Weakly *m*^{*}-Continuous Mappings

Definition 3.1. Let $f : X \to Y$ be a mapping between IVF minimal spaces (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . Then f is said to be *IVF weakly* m^* -continuous if for IVF point M_x in X and each IVF m-open set V containing $f(M_x)$, there is an IVF m-open set U containing M_x such that $f(U) \subseteq mCl(V)$.

Remark 3.2. Let $f : X \to Y$ be a mapping between IVF minimal spaces (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . Then every IVF *m*-continuous mapping *f* is clearly IVF weakly m^* -continuous but the converse is not always true as shown in the next example.

Example 3.3. Let $X = \{a, b\}$. Let A, B and C be IVF sets defined as follows.

$$A(a) = [0.7, 0.9], A(b) = [0.3, 0.7],$$

$$B(a) = [0.6, 0.8], B(b) = [0.5, 0.6],$$

$$C(a) = [0.7, 0.9], C(b) = [0.5, 0.7].$$

Note $C = A \cup B$. Consider an IVF *m*-structure $\mathcal{M}_1 = \{\mathbf{0}, A, B, \mathbf{1}\}$ and an IVF topological space $\mathcal{M}_2 = \{\mathbf{0}, A, B, C, \mathbf{1}\}$. Let $f : (X, \mathcal{M}_1) \to (X, \mathcal{M}_2)$ be a function defined by f(x) = x for each $x \in X$. Then f is IVF weakly m^* -continuous, but it is not IVF *m*-continuous because C is not in \mathcal{M}_1 .

Theorem 3.4. Let $f: X \to Y$ be a mapping between IVF minimal spaces (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . Then the following statements are equivalent:

(1) f is IVF weakly m^* -continuous.

(2) $f^{-1}(V) \subseteq mInt(f^{-1}(mCl(V)))$ for each IVF *m*-open set *V* in *Y*.

(3) $mCl(f^{-1}(mInt(B))) \subseteq f^{-1}(B)$ for each IVF *m*-closed set *B* in *Y*.

(4) $mCl(f^{-1}(V)) \subseteq f^{-1}(mCl(V))$ for each IVF *m*-open set *V* in *Y*.

Proof. (1) \Rightarrow (2) Let V be an IVF *m*-open set in Y and IVF point $M_x \in f^{-1}(V)$. There exists an IVF *m*-open set U containing M_x such that $f(U) \subseteq mCl(V)$. From $M_x \in U \subseteq f^{-1}(mCl(V))$ it follows $M_x \in mInt(f^{-1}(mCl(V)))$. Hence $f^{-1}(V) \subseteq mInt(f^{-1}(mCl(V)))$.

 $(2) \Rightarrow (3)$ Let B be an IVF m-closed set in Y. Then by (2) and Theorem 2.2,

$$f^{-1}(\mathbf{1} - B) \subseteq mInt(f^{-1}(mCl(\mathbf{1} - B)))$$

= $mInt(f^{-1}(\mathbf{1} - mInt(B)))$
= $mInt(\mathbf{1} - f^{-1}(mInt(B)))$
= $\mathbf{1} - mCl(f^{-1}(mInt(B))).$

Thus $mCl(f^{-1}(mInt(B))) \subseteq f^{-1}(B)$. Similarly, we can prove that $(3) \Rightarrow (2)$.

 $(3) \Rightarrow (4)$ Let V be IVF *m*-open Y. Suppose $M_x \notin f^{-1}(mCl(V))$. Then $f(M_x) \notin mCl(V)$ and so there exists an IVF *m*-open set U containing $f(M_x)$ such that $U \cap V = \emptyset$. It follows $mCl(U) \cap V = \emptyset$. By (2), $M_x \in f^{-1}(U) \subseteq mInt(f^{-1}(mCl(U)))$. Hence there exists an IVF *m*-open set G containing M_x such that $M_x \in G \subseteq f^{-1}(mCl(U))$. From $mCl(U) \cap V = \emptyset$ and $f(G) \subseteq mCl(U)$, it follows $G \cap f^{-1}(V) = \emptyset$. Hence $M_x \notin mCl(f^{-1}(V))$.

(4) \Rightarrow (1) Let M_x be an IVF point in X and V an IVF *m*-open set in Y containing $f(M_x)$. Since $V = mInt(V) \subseteq mInt(mCl(V))$, by (4) and Theorem 2.2,

$$M_x \in f^{-1}(V) \subseteq f^{-1}(mInt(mCl(V)))$$

= $\mathbf{1} - f^{-1}(mCl(\mathbf{1} - mCl(V)))$
 $\subseteq \mathbf{1} - mCl(f^{-1}(\mathbf{1} - mCl(V)))$
= $mInt(f^{-1}(mCl(V))).$

It implies that there exists an IVF *m*-open *U* containing M_x such that $U \subseteq f^{-1}(mCl(V))$. Hence *f* is IVF weakly m^* -continuous.

Definition 3.5 ([3]). Let \mathcal{M}_X be an IVF minimal structure on X. Then \mathcal{M}_X said to have property (\mathcal{B}) if the union of any family of IVF sets belong to \mathcal{M}_X belongs to \mathcal{M}_X .

Lemma 3.6 ([3]). Let \mathcal{M}_X be an IVF minimal structure on X. Then the following are equivalent.

(1) \mathcal{M}_X has property (\mathcal{B}).

(2) If mInt(B) = B, then $B \in \mathcal{M}_X$.

(3) If mCl(F) = F, then $1 - F \in \mathcal{M}_X$.

From Lemma 3.6, we get the following:

Corollary 3.7. Let $f : X \to Y$ be a mapping between IVF minimal spaces (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . If \mathcal{M}_X have property (\mathcal{B}) , then the following statements are equivalent:

(1) f is IVF weakly m^* -continuous.

(2) $mCl(f^{-1}(mInt(F))) \subseteq f^{-1}(F)$ for each IVF *m*-closed set *F* in *Y*.

(3) $mCl(f^{-1}(mInt(mCl(B)))) \subseteq f^{-1}(mCl(B))$ for each $B \in IVF(Y)$.

(4) $f^{-1}(mInt(B)) \subseteq mInt(f^{-1}(mCl(mInt(B))))$ for each $B \in IVF(Y)$.

(5) $mCl(f^{-1}(V)) \subseteq f^{-1}(mCl(V))$ for an IVF *m*-open set *V* in *Y*.

Theorem 3.8. Let $f : X \to Y$ be a mapping between IVF minimal spaces (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) . If f is IVF weakly m^* -continuous, then $f^{-1}(A) \subseteq mInt(f^{-1}(mCl(A)))$ for A = mInt(A) in Y.

Proof. Let A be an IVF set in Y such that A = mInt(A)and $M_x \in f^{-1}(A)$. Since $f(M_x) \in mInt(A)$, there exists an IVF m-open set V containing $f(M_x)$. From definition of IVF weakly m^* -continuity, there exists an IVF m-open set U containing M_x such that $f(U) \subseteq mCl(V)$, that is, $U \subseteq f^{-1}(mCl(V))$. So that we have $M_x \in$ $mInt(f^{-1}(mCl(V))) \subseteq mInt(f^{-1}(mCl(A)))$. Hence we have $f^{-1}(A) \subseteq mInt(f^{-1}(mCl(A)))$.

From Lemma 3.6 and Corollary 3.7, the following corollary is obtained:

Corollary 3.9. Let $f : X \to Y$ be a mapping between IVF minimal spaces (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) and \mathcal{M}_X have property (\mathcal{B}) . Then f is IVF weakly m^* -continuous if and only if $f^{-1}(A) \subseteq mInt(f^{-1}(mCl(A)))$ for A = mInt(A) in Y.

Definition 3.10. Let (X, \mathcal{M}_X) be an IVF minimal space. A family of \mathcal{C} is said to be an IVF cover of X if $\mathbf{1} = \bigcup_{A \in \mathcal{C}} A$. An IVF cover \mathcal{C} of X is called an IVF M-cover of X if for each $A \in \mathcal{C}$, A = mInt(A).

An IVF set A in X is said to be *IVF M-compact* if every IVF M-cover $\mathcal{A} = \{A_i : i \in J\}$ of A has a finite subcover. And an IVF set A in X is said to be *almost IVF M-compact* (resp., *nearly IVF M-compact*) if for every IVF M-cover $\mathcal{A} = \{A_i : i \in J\}$ of A, there exists $J_0 = \{1, 2, \dots, n\} \subseteq J$ such that $A \subseteq \bigcup_{i \in J_0} mCl(A_i)$ (resp., $A \subseteq \bigcup_{i \in J_0} mInt(mCl(A_i))$).

Remark 3.11. In (X, \mathcal{M}_X) be an IVF minimal space, we have the following implications but the converses are not always true as in the next example.

IVF M-compact \Rightarrow nearly IVF M-compact \Rightarrow almost IVF M-compact

Example 3.12. Let X = I. Consider each IVF fuzzy set for 0 < n < 1,

$$\sigma_n(x) = \begin{cases} \left[\frac{1}{n}x, \frac{1}{2n}x + \frac{1}{2}\right], & \text{if } 0 \le x \le n\\ \left[-\frac{x-1}{1-n}, -\frac{x-1}{2(1-n)} + \frac{1}{2}\right], & \text{if } n < x \le 1, \end{cases}$$
$$\alpha(x) = \begin{cases} \left[0, 0\right], & \text{if } 0 \le x < 1\\ \left[1, 1\right], & \text{if } x = 1, \end{cases}$$

International Journal of Fuzzy Logic and Intelligent Systems, vol. 9, no. 2, June 2009

$$\beta(x) = \begin{cases} [1,1], & \text{if } 0 \le x < 1\\ [0,0], & \text{if } x = 1. \end{cases}$$

Consider an IVF minimal structure

$$\mathcal{M}_1 = \{ \mathbf{0}, \mathbf{1}, \alpha \} \cup \{ \sigma_n : 0 < n < 1 \}$$

and an IVF fuzzy set δ defined as follows.

$$\delta(x) = \begin{cases} [1,1], & \text{if } 0 < x < 1\\ [0,0], & \text{if } x = 0,1, \end{cases}$$

Let $C = \{\sigma_n : 0 < n < 1\}$ be an IVF *M*-cover of δ . Then since β is an IVF *m*-closed set and $\sigma_n \subseteq \beta$ for 0 < n < 1, the IVF fuzzy set δ is almost IVF *M*-compact but not nearly IVF *M*-compact.

Consider an IVF minimal structure

$$\mathcal{M}_2 = \{\mathbf{0}, \mathbf{1}, \alpha, \beta\} \cup \{\sigma_n : 0 < n < 1\}.$$

Then the IVF fuzzy set β is nearly IVF M-compact but not IVF M-compact.

Theorem 3.13. Let $f : X \to Y$ be an IVF weakly m^* -continuous mapping between IVF minimal spaces (X, \mathcal{M}_X) and (X, \mathcal{M}_Y) . If A is an IVF M-compact set, then f(A) is an almost IVF compact set.

Proof. Let $\{B_i \in IVF(Y) : i \in J\}$ be an IVF Mopen cover of f(A) in Y. Then by Theorem 3.4 (4), we have $f^{-1}(B_i) \subseteq mInt(f^{-1}(mCl(B_i)))$ for each $i \in J$. Thus $\{mInt(f^{-1}(mCl(B_i))) : i \in J\}$ is an IVF Mcover of A in X. By definition of IVF M-compactness, there exists $J_0 = \{1, 2, \dots, n\} \subseteq J$ such that $A \subseteq \bigcup_{i \in J_0} mInt(f^{-1}(mCl(B_i))) \subseteq f^{-1}(mCl(B_i))$. Hence $f(A) \subseteq \bigcup_{i \in J_0} mCl(B_i)$.

Lemma 3.14. Let $f : X \to Y$ be an IVF weakly m^* -continuous mapping between IVF minimal spaces (X, \mathcal{M}_X) and (X, \mathcal{M}_Y) . Then for B = mCl(B) in Y, $mCl(f^{-1}(mInt(B))) \subseteq f^{-1}(B)$.

Proof. From Theorem 2.2 and Theorem 3.8, it is easily obtained. \Box

Theorem 3.15. Let $f : X \to Y$ be an IVF weakly m^* continuous and IVF *m*-open mapping between an IVF minimal space (X, \mathcal{M}) and an IVF topological space (Y, τ) . If *A* is an almost IVF *M*-compact set, then f(A) is an almost IVF compact set.

Proof. Let $\{B_i \in IVF(Y) : i \in J\}$ be an IVF open cover of f(A) in Y. Then by Theorem 3.4 (4), $\{mInt(f^{-1}(mCl(B_i))) : i \in J\}$ is an IVF Mcover of A in X. By definition of almost IVF Mcompactness, there exists $J_0 = \{1, 2, \dots, n\} \subseteq J$ such that $A \subseteq \bigcup_{i \in J_0} mCl(mInt(f^{-1}(mCl(B_i)))))$. Since $mCl(mCl(B_i)) = mCl(B_i)$, from Theorem 2.5 and Lemma 3.14, it follows

$$\begin{array}{l} \cup_{i \in J_0} mCl(mInt(f^{-1}(mCl(B_i)))) \\ \subseteq \cup_{i \in J_0} mCl(f^{-1}(mInt(mCl(B_i)))) \\ \subseteq \cup_{i \in J_0} f^{-1}(mCl(B_i)). \end{array}$$
Hence $f(A) \subseteq \cup_{i \in J_0} mCl(B_i).$

Theorem 3.16. Let $f : X \to Y$ be an IVF weakly m^* continuous and IVF *m*-open mapping between an IVF minimal space (X, \mathcal{M}) and an IVF topological space (Y, τ) . If *A* is a nearly IVF *M*-compact set, then f(A) is a nearly IVF compact set.

Proof. Let $\{B_i \in IVF(Y) : i \in J\}$ be an IVF open cover of f(A) in Y. Then $\{mInt(f^{-1}(mCl(B_i))) : i \in J\}$ is an IVF *M*-cover of A in X. By definition of nearly IVF *M*compactness, there exists $J_0 = \{1, 2, \dots, n\} \subseteq J$ such that $A \subseteq \bigcup_{i \in J_0} mInt(mCl(mInt(f^{-1}(mCl(B_i))))))$. Since $mCl(mCl(B_i)) = mCl(B_i)$, from Theorem 2.5 and Lemma 3.14, it follows for $i \in J_0$,

 $mInt(mCl(mInt(f^{-1}(mCl(B_i))))) \subseteq mInt(mCl(f^{-1}(mInt(mCl(B_i))))) \subseteq mInt(f^{-1}(mCl(B_i))) \subseteq f^{-1}(mInt(mCl(B_i))).$

Hence
$$f(A) \subseteq \bigcup_{i \in J_0} mInt(mCl(B_i))$$
.

References

- M. B. Gorzalczany, "A method of inference in approximate reasoning based on interval-valued fuzzy sets", *J. Fuzzy Math.*, vol. 21, pp. 1-17, 1987.
- [2] W. K. Min, "Interval-Valued Fuzzy Minimal Structures and Interval-Valued Fuzzy Minimal Spaces", *International Journal of Fuzzy Logic and Intelligent Systems*, vol. 8, no.3, pp. 202-206, 2008.
- [3] W. K. Min and M. H. Kim, "Interval-Valued Fuzzy M-Continuity and Interval-Valued Fuzzy M*-open mappings", International Journal of Fuzzy Logic and Intelligent Systems, vol. 9, no. 1, pp. 47-52, 2009.
- [4] T. K. Mondal and S. K. Samanta, "Topology of interval-valued fuzzy sets", *Indian J. Pure Appl. Math.*, vol. 30, no. 1, pp. 23-38, 1999.
- [5] L. A. Zadeh, "Fuzzy sets", *Information and Control*, vol. 8, pp. 338-353, 1965.

Won Keun Min

Professor of Kangwon National University Research Area: Fuzzy topology, General topology E-mail : wkmin@kangwon.ac.kr

Myeong Hwan Kim

Professor of Kangwon National University Research Area: Fuzzy mathematics, Analysis E-mail: mwkim@kangwon.ac.kr