DOI QR코드

DOI QR Code

Intuitionistic fuzzy k-ideals of a semiring

  • Hur, Kul (Division of Mathematics and Informational Statistics, and Nanoscale Science and Fecchnology Institute, Wonkwang University) ;
  • Kim, Ro-Ra (Division of Mathematics and Informational Statistics, and Nanoscale Science and Fecchnology Institute, Wonkwang University) ;
  • Lim, Pyung-Ki (Division of Mathematics and Informational Statistics, and Nanoscale Science and Fecchnology Institute, Wonkwang University)
  • Received : 2008.06.03
  • Accepted : 2009.05.14
  • Published : 2009.06.30

Abstract

We introduce the concepts of intuitionistic fuzzy k-ideals and intuitionistic fuzzy prime k-ideals of a semiring. And we investigate some properties of them.

Keywords

References

  1. T. C. Ahn, K. Hur and K. W. Jang, "Intuitionistic fuzzy ideals of asemigroup", Honam. Mathemati-cal J. vol. 27, no. 4, pp. 526-541, 2005
  2. T. C. Ahn, K. Hur and H. S. Kang, "Intuitionistic fuzzy semiprime ideals of a semigroup", J.Korea Soc. Math. Educ. Ser. B: Pure App1. Math, vol. 14, no. 3, pp. 139-151, 2007
  3. P. J. Allen and L. Dale, "Ideal theory in semining $Z^{+}$", Pub. Math. Dubrecen, vol. 22, pp. 219, 1975
  4. K. Atanassov, "Intuitionistic fuzzy sets," Fuzzy and Systems, vol. 20, pp. 87-96, 1986 https://doi.org/10.1016/S0165-0114(86)80034-3
  5. Baldev Banerjee and Dhiren Kr. Basnet, "Intui-tionistic fuzzy subrings and ideals", J. Fuzzy Math. vol. 11, no. 1, pp. 139-155, 2003
  6. R. Biswas, "Intuitionistic fuzzy subgroups", Mathematical Forum $\chi$, pp. 37-46, 1989
  7. S. Bourne and H. Zassenhaus, "On semiradical of a semiring", Proc. Nat. Acad., vol. 44, pp. 907914, 1958
  8. Do$\check{g}$an $\check{C}$ oker, "An introduction to intuitionistic fuz-zy topological spaces", Fuzzy Sets and Systems, vol. 88, pp. 81-89, 1997 https://doi.org/10.1016/S0165-0114(96)00076-0
  9. T. K. Dutta and B. K. Biswas, "Fuzzy k-ideals of semigroups", Bull. cal. Math. Soc. vol. 87, pp. 91-96, 1995
  10. K. Hur, S. Y. Jang and H. W. Kang, "Intuitionis-tic fuzzy subgroupids", International Journal of Fuzzy Logic and Intelligent Systems, vol. 3, no. 1, pp. 72-77, 2003 https://doi.org/10.5391/IJFIS.2003.3.1.072
  11. K. Hur, H. W. Kang and H. K. Song, "Intuitionistic fuzzy subgroups and subrings", Honam Mathmatical J. vol. 25, no. 2, pp. 19-41, 2003
  12. K. Hur, K. J. Kim and H. K. Song, "Intuitionis-tic fuzzy ideals and bi-ideals", Honam Math, J. vol. 26, no. 3, pp. 309-330, 2004
  13. K. Hur, S. Y. Jang and H. W. Kang, "Intuitionis-tic fuzzy normal subgroups and Intuitionistic fuzzy cosets", Honam Math. J. vol. 26, no. 4, pp. 559587, 2004
  14. K. Hur, S. Y. Jang and H. W. Kang, "Intuitionis-tic fuzzy ideals of a ring", J. Korea soc. Math. Educ. Ser. B: Pure Appl. Math. vol. 12, no. 3, pp. 193-209, 2005
  15. K.Hur, S. Y. Jang and K. C. Lee, "Intuitionistic fuzzy weak congruences on a semiring", International Journal of Fuzzy Logic and Intelligent Systems, vol. 6, no. 4, pp. 321-330, 2006 https://doi.org/10.5391/IJFIS.2006.6.4.321
  16. M. K. Sen and M. R. Adhikari, "On maximal k-ideals of semirings", Proc. Amer. Math. Soc., To appear, 1994
  17. L. A. Zadeh, "Fuzzy sets", Inform. And Comtrol vol. 8, pp. 338-353, 1965 https://doi.org/10.1016/S0019-9958(65)90241-X