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Abstract

By using the notion of fuzzy functions introduced by Dib and Youssef, we obtain fuzzy analogues of some
results concerning ordinary functions. In particular, we give the definition different from one of invertible fuzzy
function introduced by Dib and Youssef. And we show that the two definitions are equivalent. Furthermore,
we introduce the concepts of fuzzy increasing functions and fuzzy isomorphisms, and we obtain fuzzy analogues
of many results concerning ordinary increasing functions and isomorphisms.

Key words : fuzzy function, fuzzy partially ordered set.

1. Introduction

In the usual set theory, functions are special types of
relations and relations are subsets of Cartesian prod-
uct. Thus the concept of Cartesian product plays an
important role in the usual theory of relations and
functions. Almost all authors have worked with fuzzy
relations without referring to what may be called fuzzy
Cartesian product (See [1,3,7,8]).

However, in 1991, by using J-fuzzy sets, Dib and
Youssef introduced the notion of fuzzy Cartesian prod-
uct and they defined a fuzzy relation as a subset of
the fuzzy Cartesian product (See [2]). This definition
is different from all known definitions of fuzzy rela-
tions. Also they defined a fuzzy function as a special
type of a fuzzy relation. In particular, they defined
a fuzzy partially ordered set and investigated some of
it′s properties. We can see that this definition gen-
eralizes Zadeh′s definition and is different from those
in [3]. Moreover, Hur et al. [5], and Lee [6] obtained
fuzzy analogues of many results concerning ordinary
equivalence relations and functions in the sense of Dib
and Youssef.

In section 2, by using the definition of fuzzy functions
introduced by Dib and Youssef, we obtain fuzzy ana-
logues of many results concerning ordinary functions.
In particular, we give the definition from one of invert-

ible fuzzy function introduced by Dib and Youssef, and
consequently prove that the two definitions are equiv-
alent.

In section 3, we investigate fuzzy analogues of some
results concerning ordinary partially ordered sets.

In section 4, we introduce the concepts of fuzzy in-
creasing functions and fuzzy isomorphisms. And we
study some of their properties.

2. Preliminaries

The totally ordered set I = [0, 1] is a distributive but
not complemented lattice under the operations of in-
fimum ∧ and supremum ∨. On J = I × I we define a
partial order ≤, in terms of the partial order on I, as
follows: For every (r1, r2), (s1, s2) ∈ J ,

(i) (r1, r2) ≤ (s1, s2) if and only if r1 ≤ s1, r2 ≤ s2

whenever s1 6= 0 and s2 6= 0,
(ii) (0, 0) = (s1, s2) whenever s1 = 0 or s2 = 0.

It is clear that J is a distributive but not comple-
mented vector lattice. The operations of infimum and
supremum in J are given respectively by: For every
(r1, r2), (s1, s2) ∈ J ,

(r1, r2) ∧ (s1, s2) = (r1 ∧ s1, r2 ∧ s2)
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and
(r1, r2) ∨ (s1, s2) ≤ (r1 ∨ s1, r2 ∨ s2),

where the equality holds in the last relation when
ri 6= 0 6= si.

For sets X,Y and Z, f = (f1, f2) : X → Y × Z
is called a complex mapping if f1 : X → Y and
f2 : X → Z are mappings, where f(x) = (f1(x), f2(x))
for each x ∈ X.

Definition 2.1[5]. Let X be a nonempty set.
A complex mapping A = (µA, ηA) : X → J is
called a J-fuzzy set (in short, fuzzy set) in X, where
A(x) = (µA(x), ηA(x)) for each x ∈ X, In particu-
lar, ∅ and X denote the J-fuzzy empty set and J-
fuzzy whole set in X defined by ∅(x) = (0, 0) and
X(x) = (1, 1) for each x ∈ X, respectively.

The notation {(x,A(x)) : x ∈ X} or simply {(x, r)},
where r = A(x), will be used to denote a fuzzy set
in X (see [7]). Similarly, a J-fuzzy set in X, a fuzzy
set in X × Y and a J-fuzzy set in X × Y will be de-
noted respectively by {(x, (r1, r2))}, {((x, y), r)} and
{((x, y), (r1, r2))}. To each fuzzy set {(x, r1)} inX and
fuzzy set {(y, r2)} in Y there corresponds a J-fuzzy set
{((x, y), (r1, r2))} in X × Y . Throughout this thesis,
the notation (x, r) ∈ A means that A(x) = r, where
A ∈ IX , and X,Y, Z, etc denote ordinary sets.

Definition 2.2[2]. Let X and Y be two ordinary
sets. Then the collection of all J-fuzzy sets in X × Y
is called the fuzzy Cartesian product of X and Y and
is denoted by X×Y . Hence X×Y = JX×Y .

The fuzzy Cartesian product of a fuzzy set A =
{(x, r)} in X and a fuzzy set B = {(y, s)} in Y is
the J-fuzzy set A×B in X × Y defined by:

A×B = {((x, y), (r, s)) : x ∈ X, y ∈ Y } ≡ {((x, y), (r, s))}.

It is clear that A×B ∈ X×Y for each A ∈ IX and
B ∈ IY . The above definitions can be generalized
for any finite number of sets. Furthermore, the above
definitions can be generalized in an obvious way by re-
placing the unit interval I by an arbitrary completely
distributive lattice.

Definition 2.3[2]. ρ is called a fuzzy relation from
X to Y if ρ ⊂ X×Y . In particular, ρ is called a fuzzy
relation in X if ρ ⊂ X×X.

It is clear that X×Y is itself a fuzzy relation from
X to Y and any collection of A×B, where A ∈ IX and
B ∈ IY , is a fuzzy relation from X to Y .

The fuzzy Cartesian product X×X is called the uni-
versal fuzzy relation in X. The fuzzy relation ∅×∅ = ∅

is called the empty fuzzy relation. Between these two
extreme cases, lies the identity fuzzy relation, denoted
by ∆X , where ∆X is the fuzzy relation in X whose
members are the J-fuzzy sets {((x, x), (r, r)) : x ∈ X
and r ∈ I}.

Definition 2.4[2]. Let ρ1 and ρ2 be fuzzy relations
from X to Y .

(1) We say that ρ1 is contained in ρ2 if whenever
((x, y), (r1, r2)) ∈ A ∈ ρ1, there exists B ∈ ρ2 such
that ((x, y), (r1, r2)) ∈ B. In this case, we write
ρ1 ⊂ ρ2.

(2) We say that ρ1 and ρ2 are equal if ρ1 ⊂ ρ2 and
ρ2 ⊂ ρ1. In this case, we write ρ1 = ρ2.

To each J-fuzzy set C = {((x, y), (r, s))} in X × Y
we associate a J-fuzzy set C−1 in Y × X defined by
C−1 = {((y, x), (s, r))}

Definition 2.5[2]. Let ρ be a fuzzy relation from X
to Y . Then the inverse of ρ, denoted ρ−1, is the fuzzy
relation from Y to X defined by ρ−1 = {C−1 : C ∈ ρ}.

Definition 2.6[2]. Let ρ be a fuzzy relation from X
to Y and let σ be a fuzzy relation from Y to Z. Then
the composition of ρ and σ, denoted σ ◦ ρ, is the fuzzy
relation from X to Z whose constituting J-fuzzy sets
C ∈ X×Z are defined as follows:

((x, z), (r1, r3)) ∈ C if and only if there exists
(y, r2) ∈ Y × I such that ((x, y), (r1, r2)) ∈ A and
((y, z), (r2, r3)) ∈ B for some A ∈ ρ and B ∈ σ. Hence
σ ◦ ρ = {C ∈ X×Z : C is as defined above}.

It is clear that if ρ is a fuzzy relation in X, then
∆X ◦ ρ ⊂ ρ and ρ ◦∆X ⊂ ρ.

Result 2.A[2, Proposition in p.303]. Let
ρ, ρ1, ρ2, ρ3, σ1, σ2 be any fuzzy relations defined on the
appropriate sets. Then

(1) (ρ1 ◦ ρ2) ◦ ρ3 = ρ1 ◦ (ρ2 ◦ ρ3).
(2) ρ1 ⊂ ρ2 and σ1 ⊂ σ2 ⇒ ρ1 ◦ σ1 ⊂ ρ2 ◦ σ2.
(3) ρ1 ◦ (ρ2 ∪ ρ3) = (ρ1 ◦ ρ2) ∪ (ρ1 ◦ ρ3).
(4) ρ1 ◦ (ρ2 ∩ ρ3) ⊂ (ρ1 ◦ ρ2) ∩ (ρ1 ◦ ρ3).
(5) ρ1 ⊂ ρ2 ⇒ ρ−1

1 ⊂ ρ−1
2 .

(6) (ρ−1)−1 = ρ and (ρ1 ◦ ρ2)−1 = ρ2
−1 ◦ ρ1

−1.
(7) (ρ1 ∪ ρ2)−1 = ρ1

−1 ∪ ρ2
−1.

(8) (ρ1 ∩ ρ2)−1 = ρ1
−1 ∩ ρ2

−1.

Definition 2.7[2]. Let ρ be a fuzzy relation in X.
Then ρ is said to be:

(1) reflexive in X if for each x ∈ X and r ∈ I, there
exists A ∈ ρ such that ((x, x), (r, r)) ∈ A, i.e., ∆X ⊂ ρ.

(2) symmetric in X if whenever ((x, y), (r, s)) ∈ A ∈
ρ, there exists B ∈ ρ such that ((y, x), (s, r)) ∈ B, i.e.,
ρ−1 = ρ.
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(3) transitive in X if whenever ((x, y), (r, s)) ∈ A ∈ ρ
and ((y, z), (s, t)) ∈ B ∈ ρ, there exists C ∈ ρ such
that ((x, z), (r, t)) ∈ C, i.e., ρ ◦ ρ ⊂ ρ.

(4) a fuzzy equivalence relation in X if it is reflexive,
symmetric and transitive.

We will denote the set of all fuzzy equivalence re-
lations in X as FRelE(X). It is clear that X×X,
∆X ∈ FRelE(X).

Result 2.B[2, Proposition in p.303]. Let ρ and σ
be fuzzy relations on a set X. Then

(1) If ρ is reflexive [resp. symmetric and transitive],
then ρ−1 is reflexive [resp. symmetric and transitive].

(2) If ρ is reflexive [resp. symmetric and transitive],
then ρ ◦ ρ is reflexive [resp. symmetric and transitive].

(3) If ρ is reflexive, then ρ ⊂ ρ ◦ ρ.
(4) If ρ is symmetric, then ρ∪ ρ−1, ρ∩ ρ−1 are sym-

metric and ρ ◦ ρ−1 = ρ−1 ◦ ρ.
(5) If ρ and σ are reflexive [resp. symmetric and

transitive], then ρ ∩ σ is reflexive [resp. symmetric
and transitive].

(6) If ρ and σ are symmetric, then ρ∪σ is symmetric.

3. Fuzzy functions

In the usual set theory, functions are special types of
relations. Dib and Youssef[2] defined fuzzy functions
analogously as special types of fuzzy relations.

First of all, we list some definitions introduced and
some results investigated by Dib and Youssef. Next,
we improve another results corresponding to fuzzy
functions for ordinary functions.

Definition 3.1[2]. Let X and Y be nonempty sets.
Then a fuzzy relation F from X to Y is called a fuzzy
function from X to Y if F : IX → IY is a func-
tion from IX to IY characterized by the ordered pair
(F, {fx}x∈X), where F : X → Y is a function from X
to Y and {fx}x∈X is a family of functions fx : I → I
satisfying the conditions:

(α) fx is nondecreasing on I,
(β) fx(0) = 0 and fx(1) = 1,

such that the image of any fuzzy set A in X under F
is a fuzzy set F(A) in Y defined as follows: For each
y ∈ Y ,

F(A) =
{ ∨

x∈F−1(y) fx(A(x)) if F−1(y) 6= ∅,
0 if F−1(y) = ∅.

In this case, we write F = (F, {fx}x∈X) : X → Y or,
simply, F = (F, fx) : X → Y to denote a fuzzy func-
tion from X to Y and we call the functions fx, x ∈ X,

the comembership functions associated to F. If there
exists A ∈ F such that (x, F (x), r, fx(r)) ∈ A ∈ F for
each (x, r) ∈ X × I, then we write this in the form
F(x, r) = (F (x), fx(r)).

Two fuzzy functions F = (F, fx) : X → Y and
G = (G, gx) : X → Y are said to be equal, denoted by
F = G, if F(A) = G(A) for each A ∈ IX .

Result 3.A[2, Theorem 5]. Let F = (F, fx) : X →
Y and G = (G, gx) : X → Y be fuzzy functions. Then
F = G if and only if F = G and fx = gx for each
x ∈ X.

Let F = (F, fx) : X → Y be a fuzzy function. The
inverse image under F of a fuzzy set B in Y , denoted
by F−1(B), is a fuzzy set in X defined as follows:

F−1(B) =
⋃
{C ∈ IX : F(C) ⊂ B}.

Result 3.B[2, Proposition in p.311]. Let F =
(F, fx) : X → Y be any fuzzy function whose comem-
bership functions fx are surjective. Then for each
fuzzy set B in Y , and each x ∈ X,
F−1(B)(x) =

∨
fx
−1[B(F (x))], where the supremum

is taken over the set of values fx−1[B(F (x))] ⊂ I.

Result 3.C[2, Theorem 6]. Let F = (F, fx) : X →
Y be a fuzzy function, let A,B ∈ IX , {Aα}α∈Γ ⊂ IX

and let C,D ∈ IY , {Cα}α∈Γ ⊂ IY . Then
(1) F(∅) = ∅.
(2) F(X) = Y if F is surjective.
(3) If A ⊂ B, then F(A) ⊂ F(B).
(4) F(A ∪B) = F(A) ∪ F(B).
(5) F(A ∩ B) ⊂ F(A) ∩ F(B) (equality holds if F is

injective).
(6) F−1(Y ) = X.
(7) If C ⊂ D, then F−1(C) ⊂ F−1(D).
(8) A ⊂ F−1(F(A)) (equality holds if F is bijective).

If fx is surjective for each x ∈ X, then
(9) F(

⋃
α∈ΓAα) =

⋃
α∈Γ F(Aα).

(10) F(
⋂
α∈ΓAα) ⊂

⋂
α∈Γ F(Aα) (equality holds if F

is injective).
(11) F−1(

⋃
α∈Γ Cα) =

⋃
α∈Γ F−1(Cα).

(12) F−1(
⋂
α∈Γ Cα) =

⋂
α∈Γ F−1(Cα).

(13) F(F−1(C)) ⊂ C (equality holds if F is surjec-
tive).
If fx(1− r) ≥ 1− fx(r) for each (x, r) ∈ X × I, then

(14) F(Ac) ⊃ (F(A))c if F is surjective. (Equality
holds if F is bijective and fx(1− r) = 1− fx(r).)
If fx is bijective and fx(1 − r) = 1 − fx(r) for each
(x, r) ∈ X × I, then

F−1(Dc) = (F−1(D))c.

The composition of two fuzzy functions F = (F, fx) :
X → Y and G = (G, gy) : Y → Z is the fuzzy function
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G ◦ F : X → Z defined by (G ◦ F)(A) = G(F(A)) for
each A ∈ IX .

Let F = (F, fx) : X → Y be a fuzzy function. Then
F is said to be injective or one-to-one if for any fuzzy
sets A1 and A2 in X, F(A1) = F(A2) implies A1 = A2.
Surjective and bijective fuzzy functions can be defined
similarly in an obvious manner. It is clear that the
fuzzy identity function idX = (idX , idI) : X → X is
bijective, where idX : X → X and idI : I → I are
identity functions, respectively.

A fuzzy function F = (F, fx) : X → Y is said
to be invertible if there exists a fuzzy function
G = (G, gy) : Y → X such that G ◦ F = idX and
F ◦ G = idY . In this case, the fuzzy function G is
called the inverse of F and is denoted by F−1.

Result 3.D[2, Theorem 7]. Let F = (F, fx) : X →
Y and G = (G, gy) : Y → Z be fuzzy functions. Let
gy be surjective for each y ∈ Y . Then

(1) The composition G ◦ F : X → Z of F and G is
given by

G ◦ F = (G ◦ F, g
F (x) ◦ fx).

(2) F = (F, fx) is surjective [resp. injective] if and
only if F and fx, x ∈ X, are surjective [resp. injective].

(3) F = (F, fx) is invertible if and only if F and
fx are invertible. The inverse F−1 of F is given by
F−1 = (F−1, fx

−1).

Now we will obtain some another properties of fuzzy
functions.

The following is the immediate result of Result 3.A.

Proposition 3.2. If F = (F, fx) : X → Y is a fuzzy
function, then idY ◦ F = F = F ◦ idX .

Proposition 3.3. Let F = (F, fx) : X → Y and
G = (G, gy) : Y → Z be fuzzy functions.

(1) If F and G are injective and gy is surjective for
each y ∈ Y , then G ◦ F is injective.

(2) If F and G are surjective, then G◦F is surjective.
(3) If F and G are bijective, then G ◦ F is bijective.

Proof. (1) Since gy is surjective for each y ∈ Y , by
Result 3.D(1), G ◦ F = (G ◦ F, g

F (x) ◦ fx).
Since F and G are injective, by Result 2.D(2), F and
fx, x ∈ X, are injective, and G and g

F (x) , x ∈ X,
are injective. Thus G ◦ F : X → Z and g

F (x) ◦ fx
are injective for each x ∈ X. So, by Result 3.D(2),
G ◦ F = (G ◦ F, g

F (x) ◦ fx) is injective.
(2) Since G is surjective, by Result 3.D(2), G and gy,

y ∈ Y , are surjective. Then G ◦F = (G ◦F, g
F (x) ◦ fx).

Since F is surjective, by Result 3.D(2), F and fx,
x ∈ X, are surjective. Moreover, g

F (x) is surjective

for each x ∈ X. Thus G ◦F and g
F (x) ◦ fx, x ∈ X, are

surjective. So, by Result 3.D(2), G ◦ F is surjective.
(3) It is clear that G ◦ F is bijective from (1) and

(2).

The following is the immediate result of Result 2.D.

Proposition 3.4. Let F = (F, fx) : X → Y and
G = (G, gy) : Y → Z be fuzzy functions.

(1) If G ◦ F is injective and gy is surjective for each
y ∈ Y , then F is injective.

(2) If G ◦ F is surjective and gy is surjective for each
y ∈ Y , then G is surjective.

(3) If G ◦ F is bijective and gy is surjective for each
y ∈ Y , then F is injective and G is surjective.

Now we give the definition different from one of
invertible fuzzy function introduced by Dib and
Yoyssef[2].

Definition 3.5. A fuzzy function F = (F, fx) : X →
Y is said to be invertible if F−1 = (F−1, fx

−1) : Y →
X is a fuzzy function.

Let F = (F, fx) : X → Y be an invertible fuzzy
function. Then (x, y, r, s) ∈ A ∈ F if and only if
(y, x, s, r) ∈ A−1 ∈ F−1. Thus F(x, r) = (y, s) if and
only if F−1(y, s) = (x, r).

The following is the immediate result of Definition
3.5.

Proposition 3.6. Let F = (F, fx) : X → Y be
an invertible fuzzy function. Then for each (x, r) ∈
X × I, (y, s) = F(x, r) if and only (x, r) = F−1(y, s),
equivalently, y = F (x) and s = fx(r) if and only if
x = F−1(y) and r = f−1

x (s).

The next two lemmas give a necessary and sufficient
condition for a fuzzy function to be invertible.

Lemma 3.7. If F = (F, fx) : X → Y is a bijective
fuzzy function, then F−1 = (F−1, fx

−1) : Y → X is a
bijective fuzzy function.

Proof. Suppose F = (F, fx) is bijective. Then, by
Result 3.D(2), F and fx, x ∈ X, are bijective. Thus
F−1 : Y → X and fx

−1 : I → I, x ∈ X, are bijective.
Hence, by Result 3.D(2), F−1 = (F−1, fx

−1) : Y → X
is bijective.

Lemma 3.8. If F = (F, fx) : X → Y is invertible,
then F is bijective.
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Proof. Suppose F = (F, fx) : X → Y is invert-
ible. Then F−1 = (F−1, fx

−1) : Y → X is a fuzzy
function. Thus, by Definition 2.1, F−1 : Y → X
and f−1

x : I → I are functions. So F : X → Y
and fx : I → I are invertible. Hence F and fx are bi-
jective. Therefore, by Result 3.D(2), F is bijective.

Lemmas 3.7 and 3.8 may be summarized as follows.

Theorem 3.9. Let F = (F, fx) : X → Y be a fuzzy
function. Then F is invertible if and only if it is bi-
jective ; furthermore, if F : X → Y is invertible, then
F−1 = (F−1, f−1

x ) : Y → X is bijective.

The next two lemmas give another useful characteri-
zation of invertible fuzzy functions. Moreover, we can
see that this characterization is the definition intro-
duced by Dib and Youssef.

Lemma 3.10. Let F = (F, fx) : X → Y be an
invertible fuzzy function. Then F−1 ◦ F = idX and
F ◦ F−1 = idY .

Proof. Suppose F = (F, fx) : X → Y is invertible.
Then, by Theorem 3.9, F and F−1 are bijective. Thus
by Result 3.D(1),

F−1 ◦ F = (F−1 ◦ F, f−1
x ◦ fx) and F ◦ F−1 =

(F ◦ F−1, fy ◦ f−1
y ).

Moreover, F−1 ◦ F = idX , f−1
x ◦ fx = idI and

F ◦ F−1 = idY , fy ◦ f−1
y = idI . Hence, by Result

3.A, F−1 ◦ F = idX and F ◦ F−1 = idY .

The following is the immediate result of proposition
3.4 and Result 3.D.

Lemma 3.11. Let F = (F, fx) : X → Y and
G = (G, gy) : Y → X be fuzzy functions. If
G ◦ F = idX and F ◦G = idY , then F is bijective
(hence invertible), and G = F−1.

Lemmas 3.10 and 3.11 may be summarized as fol-
lows. Thus we can see that this result is the definition
of invertible fuzzy functions introduced by Dib and
Youssef.

Theorem 3.12. Let F = (F, fx) : X → Y be a fuzzy
function. Then F is invertible if and only if there ex-
ists a fuzzy function G = (G, gy) : Y → X such that
G ◦ F = idX and F ◦G = idY .

4. Fuzzy partial orders

Definition 4.1[2]. A fuzzy relation ρ in X is said
to be antisymmetric if ((x, y), (r, t)) ∈ A ∈ ρ implies
that there is no B ∈ ρ such that ((y, x), (t, r)) ∈
B or, equivalently, ((x, y), (r, t)) ∈ A ∈ ρ and
((y, x), (t, r)) ∈ B ∈ ρ imply that x = y and r = t.

The following is the immediate result of Definition
4.1.

Proposition 4.2. Let ρ be a fuzzy relation in X. If
ρ is antisymmetric, then ρ−1 is antisymmetric.

Definition 4.3[2]. A fuzzy relation ρ in X is called
a fuzzy partial order or, simply, a fuzzy order if it is
reflexive, antisymmetric and transitive.

A nonempty set X in which a fuzzy partial order is
defined is called a fuzzy partially ordered set or, simply,
a fuzzy ordered set.

Let X be a fuzzy partially ordered set with the fuzzy
order ρ. Then we will write (x, r) . ρ(y, t), sim-
ply, (x, r) . (y, t) to denote the fact that there exist
A ∈ ρ such that ((x, y), (r, t)) ∈ A for any x, y ∈ X
and r, t ∈ I. We further agree that (y, t) & (x, r)
has the same meaning as (x, r) . (y, t) and that
(x, r) 6. (y, t) means that there is no A ∈ ρ such that
((x, y), (r, t)) ∈ A.

If (x, r), (y, t) ∈ X×I and (x, r) . (y, t), then we say
that “(x, r) is fuzzy less than or fuzzy equal to (y, t).”
We agree that (x, r) < (y, t) is an abbreviation for
“(x, r) . (y, t) and (x, r) 6= (y, t).” If (x, r) < (y, t),
then we say that “(x, r) is strictly fuzzy less than
(y, t).”

Example 4.3. Let X = {a, b, c, d, e} be a set and let
ρ = 4X ∪{A1, A2, A3} be the fuzzy relation in defined
X as follows:

A1 a b c d e
a (r0, r0) (r1, r1) (r1, r1) (r1, r1) (r1, r1)
b (r0, r1) (r0, r0) (r0, r0) (r1, r0) (r1, r0)
c (r0, r0) (r0, r0) (r0, r0) (r1, r1) (r1, r1)
d (r0, r0) (r0, r0) (r0, r0) (r0, r0) (r1, r1)
e (r0, r0) (r0, r0) (r0, r0) (r0, r0) (r0, r0),

A2 a b c d e
a (r0, r0) (r1, r1) (r1, r1) (r1, r1) (r1, r1)
b (r0, r1) (r0, r1) (r0, r1) (r0, r1) (r0, r0)
c (r0, r0) (r0, r0) (r0, r0) (r1, r1) (r1, r1)
d (r0, r0) (r0, r0) (r0, r0) (r0, r0) (r1, r1)
e (r0, r0) (r0, r0) (r0, r0) (r0, r0) (r0, r0),
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A3 a b c d e
a (r0, r1) (r1, r1) (r1, r1) (r1, r1) (r1, r1)
b (r0, r1) (r0, r1) (r0, r1) (r1, r1) (r1, r1)
c (r0, r1) (r0, r1) (r0, r1) (r0, r1) (r0, r1)
d (r0, r1) (r0, r1) (r0, r1) (r0, r1) (r0, r1)
e (r0, r1) (r0, r1) (r0, r1) (r0, r1) (r0, r1),

where r0 6= r1 ∈ I. Then we can easily see that ρ is a
fuzzy partial order in X.

The following is the immediate result of Definition
4.3 and Proposition 4.2.

Proposition 4.4. Let ρ be a fuzzy partial order in
X. Then ρ−1 is a fuzzy partial order in X.

Definition 4.5[2]. A fuzzy relation ρ in X is called
a fuzzy total (or linear) order if for any x, y ∈ X
and r, t ∈ I there exists A ∈ ρ such that either
((x, y), (r, t)) ∈ A or ((y, x), (t, r)) ∈ A.

A nonempty set X in which a fuzzy total order is
defined is called a fuzzy totally (or linearly) ordered set.

Result 4.A[2, Theorem 4]. Let ρ be a fuzzy order
in X. Then

(1) For each x0 ∈ X, ρ induces an (ordinary) order
ρ

I
(x0) in I defined by

ρ
I
(x0) = {(r, s) ∈ J : ∃A ∈ ρ s.t. ((x0, x0), (r, s)) ∈ A}.

(2) For each r0 ∈ I, ρ induces an (ordinary) order
ρ

X
(r0) in X defined by

ρ
X

(r0) = {(x, y) ∈ X×X : ∃A ∈ ρ s.t. ((x, y), (r0, r0)) ∈ A}

Example 4.A. Let ρ be the fuzzy partial order in X
in Example 4.3. Then
ρ

X
(r0) = {(a, a), (b, b), (c, c), (d, d), (e, e), (c, a), (c, b),

(d, a), (d, b), (d, c), (e, a), (e, b), (e, c), (e, d)}
and
ρ

X
(r1) = {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (a, c),

(a, d), (a, e), (b, d), (b, e), (c, d), (c, e), (d, e)}
are ordinary partial orders in X with following dia-
grams:

Furthermore,
ρ

I
(a) = ρ

I
(b) = ρ

I
(c) = ρ

I
(d) = ρ

I
(e) = {(r, r) :

r ∈ I} ∪ {(r0, r1)}
are ordinary partial orders in I.

Result 4.B[2, Corollary in p.308]. (1) To each
fuzzy partial order ρ in X there are associated an
ordinary partial order ρ

I
in I and an ordinary par-

tial order ρ
X

in X. In fact, ρ
I

=
⋂⋂ x X ρ∈ I

(x) and
ρ

X
= r I ρX

(r). In this case, ρ
I

[resp. ρ
X

] is called∈
the partial order in I [resp. X] associated to the fuzzy
partial order ρ.

(2) If ρ is a fuzzy total order in X, then ρ
I
(x) [resp.

ρ
X

(r)] is a total order in I [resp. X] for each x ∈ X
[resp. r ∈ I]. In this case, ρ

I
and ρ

X
are evidently

total order relations.

Proposition 4.6. Let {ρα}α∈Γ be an indexed family
of fuzzy partial orders in X. Then

⋂
α∈Γ ρα is a fuzzy

partial order in X.

Proof. Let ρ = α (∈Γ ρα and let x, r) ∈ X × I.
Since ∆X ⊂ ρα for

x,

⋂
each α ∈ Γ, there exists Aα ∈ ρα

such that (( x), (r, r)) ∈ Aα for each α ∈ Γ. Then
((x, x), (r, r)) ∈ α ΓAα ∈ ρ. Thus ∆∈ X ⊂ ρ.
So ρ is reflexive. Suppose ((x, y), (r, t)) ∈ A ∈ ρ
and ((y, x), (

⋂
⋂t, r)) ∈ A ∈ ρ for some A ∈ ρ.

Since ρ =⋂ α Γ ρα, there exists Aα ∈ ρα such
.

∈
that A = α ΓAα. Then ((x, y), (r, t))∈ ∈ Aα or
((y, x), (t, r)) ∈ Aα. Since ρα is antisymmetric, x = y
and r = t. Thus ρ is antisymmetric. Suppose
((x, y), (r, s)) ∈ A ∈ ρ and ((y, z), (s, t)) ∈ B ∈ ρ.
Then there exist Aα ∈ ρα and Bα ∈ ρα such that
((x, y), (r, s)) ∈ Aα and ((y, z), (s, t)) ∈ Bα for each
α ∈ Γ. Since ρα is transitive for each α ∈ Γ,
there exists Cα ∈ ρα such that ((x, z), (r, t)) ∈ Cα
for each α ∈ Γ. Let C = α∈Γ Cα. Then clearly
((x, z), (r, t)) ∈ C ∈ ρ. Thus

⋂
ρ is transitive. Hence ρ

is a fuzzy partial order in X.

Theorem 4.7. Let ρ be a fuzzy relation in X. Then ρ
is a fuzzy partial order in X if and only if ρ∩ρ−1 = ∆X

and ρ ◦ ρ = ρ.

Proof. (⇒): Suppose ρ is a fuzzy partial order. Since
ρ is reflexive, by Result 1.A(1), ρ−1 is reflexive. Then
∆X ⊂ ρ and ∆X ⊂ ρ−1. Thus ∆X ⊂ ρ ∩ ρ−1. Let
((x, y), (r, t)) ∈ A ∈ ρ∩ρ−1. Then there exist B,C ∈ ρ
such that A = B ∩ C−1. Thus ((x, y), (r, t)) ∈ B and
((x, y), (r, t)) ∈ C−1, i.e., ((y, x), (t, r)) ∈ C. Since ρ is

ρ
X

(r0):

a b

c

d

e ,

b "b "
b "

b "
b "

ρ
X

(r1):

a

b

c

d

e
.�
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antisymmetric, x = y and r = t. Thus ρ ∩ ρ−1 ⊂ ∆X .
So ρ ∩ ρ−1 = ∆X . Since ρ is transitive, ρ ◦ ρ ⊂ ρ.
Since ρ is reflexive, by Result 2.B(3), ρ ⊂ ρ ◦ ρ. Thus
ρ ◦ ρ = ρ.

(⇐): Suppose ρ ∩ ρ−1 = ∆X and ρ ◦ ρ = ρ. Then
clearly ∆X ⊂ ρ and ρ ◦ ρ ⊂ ρ. Thus ρ is reflexive
and transitive. Now suppose ((x, y), (r, t)) ∈ A ∈ ρ
and ((y, x), (t, r)) ∈ B ∈ ρ. Then ((x, y), (r, t)) ∈
A ∩ B−1 ∈ ρ ∩ ρ−1 = ∆X . Thus x = y and r = t. So
ρ is antisymmetric. This completes the proof.

5. Fuzzy order preserving fuzzy func-
tions

Definition 5.1. Let X and Y be fuzzy partially or-
dered sets. Then a fuzzy function F = (F, fx) : X → Y
is said to be fuzzy increasing or fuzzy order preserv-
ing if it satisfies the following condition: For any
(x, r), (y, t) ∈ X × I,

(x, r) . (y, t) ⇒ F(x, r) . F(y, t).

Theorem 5.2. Let (X, ρ) and (Y, σ) be fuzzy par-
tially ordered sets, let F = (F, fx) : X → Y be a fuzzy
function and let fx be identical for all x ∈ X. Then F
is fuzzy increasing if and only if F : (X, ρ

X
)→ (Y, σ

Y
)

and fx : (I, ρ
I
)→ (I, σ

I
) are increasing.

Proof. (⇒): Suppose F is fuzzy increasing. For any
x, y ∈ X. let (x, y) ∈ ρ

X
and let r0 ∈ I. Then,

by Results 4.A(2) and 4.B(1), there exists A ∈ ρ
such that ((x, y), (r0, r0)) ∈ A. Thus (x, r0) . (y, r0).
Since F is fuzzy increasing, F(x, r0) . F(y, r0), i,e.,
(F (x), fx(r0)) . (F (y), fy(r0)). Since fx are identi-
cal for all x ∈ X, fx(r0) = fy(r0). Thus there exists
B ∈ σ such that ((F (x), F (y)), (fx(r0), fy(r0)) ∈ B.
So (F (x), F (y)) ∈ σ

Y
. Hence F : (X, ρ

X
)→ (Y, σ

Y
) is

increasing.
Now for any r, t ∈ I, let (r, t) ∈ ρ

I
and let x0 ∈ X.

Then, by Results 4.A(1) and 4.B(1), there exists C ∈ ρ
such that ((x0, x0), (r, t)) ∈ C. Thus (x0, r) . (x0, t).
Since F is fuzzy increasing, F(x0, r) . F(x0, t), i,e.,
(F (x0), fx0(r)) . (F (x0), fx0(t)). Thus there exists
D ∈ σ such that (F (x0), F (x0)), (fx0(r), fx0(t))
∈ D. So (fx0(r), fx0(t)) ∈ σ

I
. Hence fx : (I, ρ

I
) →

(I, σ
I
) is increasing.

(⇐): Obvious.

Proposition 5.3. Let F = (F, fx) : X → Y and
G = (G, gy) : Y → Z be fuzzy increasing. If gy : I → I
is surjective for each y ∈ Y , then G ◦ F : X → Z is
fuzzy increasing.

Proof. Suppose (x, r) . (y, t) for any (x, r), (y, t) ∈
X × I. Since F is fuzzy increasing, F(x, r) . F(y, t),
i.e., (F (x), fx(r)) . (F (y), fy(t)) in Y . Since G is
fuzzy increasing and gy : I → I is surjective for
each y ∈ Y , G(F (x), fx(r)) . G(F (y), fy(t)), i,e.,
(G(F (x)), g

F (x)(fx(r))) . (G(F (y)), g
F (y)(fy(t))) in

Z. Thus (G ◦ F)(x, r) . (G ◦ F)(y, t). Hence G ◦ F is
fuzzy increasing.

Definition 5.4. Let (X, ρ) be a fuzzy partially or-
dered set and let Y ∈ P (X), where P (X) denote the
set of all subsets of X. Then σ is called a fuzzy partial
suborder of ρ if σ = ρ|

Y×Y
is a fuzzy partial order in

Y , where ρ|
Y×Y

= {A|Y×Y : A ∈ ρ}. In this case,
(Y, σ) is called a fuzzy partially ordered subset of X.

Let Y be a fuzzy partially ordered subset of a
fuzzy partially ordered set X. If (x, r) ∈ Y × I and
(y, t) ∈ Y × I, then we let (x, r) . (y, t) in Y if and
only if (x, r) . (y, t) in X.

Let X be a fuzzy partially ordered set. Two ele-
ments (x, r) and (y, t) in X × I are said to be fuzzy
comparable if either (x, r) . (y, t) or (y, t) . (x, r);
otherwise, they are said to be fuzzy incomparable.

Definition 5.5. Let X be a fuzzy partially ordered
set and let Y be a fuzzy partially ordered subset of X.
Then Y is called a fuzzy fully ordered subset of X, or
a fuzzy linearly ordered subset of X or a fuzzy chain
of X if any two elements of Y ×I are fuzzy comparable.

Proposition 5.6. Let F = (F, fx) : X → Y be an
increasing fuzzy function and let fx : I → I be surjec-
tive for each x ∈ X. If C is a fuzzy chain of X, then
F (C) is a fuzzy chain of Y .

Proof. Let (y, u), (y′, v) ∈ F (C)×I. Then there exist
x, x′ ∈ C such that y = F (x) and y′ = F (x′). Since
fx : I → I is surjective for each x ∈ X, there exist
r, t ∈ I such that u = fx(r) and v = fx′(t). Since F is
a fuzzy function, F(x, r) = (y, u) and F(x′, t) = (y′, v).
Since C is a fuzzy chain of X, either (x, r) . (x′, t)
or (x′, t) . (x, r). Since F is fuzzy increasing, either
F(x, r) . F(x′, t) or F(x′, t) . F(x, r). Thus either
(y, u) . (y′, v) or (y′, v) . (y, u). Hence F (C) is a
fuzzy chain of Y .

Definition 5.7. Let C be a fuzzy partially ordered
subset of a fuzzy partially ordered set X. Then C is
said to be fuzzy convex if it satisfies the following con-
dition: (a, r), (b, t) ∈ C × I and (a, r) . (x, s) . (b, t)
imply (x, s) ∈ C × I.

Proposition 5.8. Let X and Y be fuzzy ordered
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sets, let F = (F, fx) : X → Y be an increasing fuzzy
function and let C be a fuzzy convex ordered subset
of Y . Then F−1(C) is a fuzzy convex ordered subset
of X.

Proof. Clearly F−1(C) is a fuzzy ordered sub-
set of X. Suppose (a, r), (b, t) ∈ F−1(C) × I and
(a, r) . (x, s) . (b, t). Since F = (F, fx) : X → Y is an
increasing fuzzy function, F(a, r) . F(x, s) . F(b, t),
i.e., (F (a), fa(r)) . (F (x), fx(s)) . (F (b), fb(t)).
Since (a, r), (b, t) ∈ F−1(C)× I, (F (a), fa(r)) ∈ C × I
and (F (b), fb(t)) ∈ C × I. Since C is a fuzzy convex
ordered subset of Y , (F (x), fx(s)) ∈ C × I. Thus
(x, s) ∈ F−1(C)× I. Hence F−1(C) is a fuzzy convex
ordered subset of X.

Definition 5.9. Let X and Y be fuzzy partially or-
dered sets. Then a fuzzy function F = (F, fx) : X → Y
is called a fuzzy isomorphism if it is fuzzy bijective and
satisfies the following condition: For any two elements
(x, r) ∈ X × I and (y, t) ∈ X × I,

(x, r) . (y, t) ⇔ F(x, r) . F(y, t).

We say that X is fuzzy isomorphic with Y , denoted
by X ' Y , if there exists a fuzzy isomorphism from
X to Y .

Theorem 5.10. Let X and Y be fuzzy partially or-
dered sets and let F = (F, fx) : X → Y be a fuzzy
bijective function. Then F : X → Y is a fuzzy isomor-
phism if and only if F : X → Y and F−1 : Y → X are
increasing fuzzy functions.

Proof. Since F is fuzzy bijective, by Theorem 3.9,
F is invertible. Then F−1(F(x, r)) = (x, r) for each
(x, r) ∈ X × I.

(⇐): Suppose F and F−1 are fuzzy increasing. If
(x, r) . (y, t) in X, then clearly F(x, r) . F(y, t).
Now if F(x, r) . F(y, t) in Y , then F−1(F(x, r)) .
F−1(F(y, t)) in X since F−1 is fuzzy increasing. Thus
(x, r) . (y, t) in X. So F is a fuzzy isomorphism.

(⇒): Suppose F is a fuzzy isomorphism. Then clearly
F is fuzzy increasing. Let F(x, r) and F(y, t) be any el-
ements of Y × I. Then

F(x, r) . F(y, t) ⇒ (x, r) . (y, t) ⇒ F−1(F(x, r))

. F−1(F(y, t)).
So F−1 is fuzzy increasing. This completes the
proof.

Theorem 5.11. Let X,Y, Z be fuzzy partially or-
dered sets.

(1) The fuzzy identity function idX = (idX , idI) :
X → X is a fuzzy isomorphism.

(2) If F = (F, fx) : X → Y is a fuzzy isomorphism,
then F−1 = (F−1, fx

−1) : Y → X is a fuzzy isomor-
phism.

(3) If F = (F, fx) : X → Y and G = (G, gy) : Y → Z
are fuzzy isomorphisms, then G◦F : X → Z is a fuzzy
isomorphism.

Proof. (1) It is clear that, idX : X → X is fuzzy bi-
jective. Moreover, idX and id−1

X are fuzzy increasing.
So, by Theorem 5.10, idX is a fuzzy isomorphism.

(2) From Theorem 5.10 and Theorem 3.9, we can
easily see that F−1 is a fuzzy isomorphism.

(3) By Proposition 5.2, G ◦ F = (G ◦ F, g
F (x) ◦ fx) :

X → Z is fuzzy increasing. By Proposition 3.3(3),
(G ◦ F) is fuzzy bijective. Moreover, we can easily
see that G ◦ F−1 is fuzzy increasing. So, by Theorem
5.10, G ◦ F is a fuzzy isomorphism. This completes
the proof.
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