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Abstract 
Measuring uncertainty for fuzzy sets has been carried out by calculating fuzzy entropy. Fuzzy entropy of fuzzy set is derived with the help 
of distance measure. The distance proportional value between the fuzzy set and the corresponding crisp set is designed as the fuzzy entropy. 
The usefulness is verified by proving the proposed entropy. Generally, fuzzy entropy contains the complementary characteristics that the 
fuzzy entropies of fuzzy set and complementary fuzzy set have the same entropies. Discrepancy that low fuzzy entropy did not guarantee 
the data certainty was overcome by modifying fuzzy entropy formulation. Obtained fuzzy entropy is analyzed and discussed through simple 
example.  
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1. Introduction 
 
The characterization and quantification of data fuzziness are 

important and interesting in the modeling and system designs, 
and they affect the management of uncertainty to the related 
fields. The fact that entropy of a fuzzy set means a measure of 
its fuzziness has been established by previous researchers [1–6]. 
Zadeh first proposed fuzzy entropy as a measure of fuzziness; 
Pal and Pal analyzed classical Shannon information entropy; 
Kosko considered the relationship between distance measure 
and fuzzy entropy; Liu proposed axiomatic definitions of 
entropy, distance measures, and similarity measures and 
discussed the relationships among these three concepts. 
Bhandari and Pal presented a measure of fuzzy information for 
distinguishing between fuzzy sets. Further, Ghosh used fuzzy 
entropy in neural networks. 

Two measures, entropy and similarity, represent the 
uncertainty and similarity with respect to the corresponding 
crisp set, respectively. Considering fuzzy entropy represents the 
degree of fuzziness of data, low fuzzy entropy value of data is 
close to the deterministic value. Fuzzy entropy is applicable to 
data selection problem, calculation of degree of fuzziness, or 
other uncertainty calculation. However, owing to the 
complementary characteristic of entropy definition, confusion 
is sometimes shown. In data selection problem, low fuzzy 
entropy value does not guarantee the certainty of data. In this 
paper, modified fuzzy entropy is proposed to overcome the 
drawback of complementary characteristic. Obtained fuzzy 
entropy is considered by adjusting corresponding crisp set. By 
the analysis of corresponding crisp set, data quantifying process 
is discussed clearly. Reliable data selection with fuzzy entropy 
is also discussed through analyzing fuzzy membership function 
and comparing the computation results. 

In the following chapter, fuzzy set entropy is explained 
through fuzzy membership function and corresponding crisp set. 
Normal fuzzy entropy is designed explicitly, which is based on 
the distance measure definition. The corresponding crisp set for 
fuzzy set satisfying minimum fuzzy entropy is derived through 
entropy formulation. Proposed fuzzy entropy is verified by 
proving definition. Furthermore, reliable data selection problem 
is carried out. In Chapter 3, the modified fuzzy entropy to 
overcome the drawback of conventional fuzzy entropy is 
considered. Modified fuzzy entropy is designed through 
changing corresponding crisp set. To obtain the modified fuzzy 
entropy, assumptions are needed. In assumptions, membership 
function symmetricity is required. Discussions are also 
followed. The conclusions are stated in Chapter 4.  

 
 

2. Fuzzy Entropy for Fuzzy Sets 
 
Data uncertainty and certainty are contained in fuzzy set 

itself, and its uncertainty and uncertainty are represented 
through fuzzy membership function. Mentioned uncertainty is 
often measured by fuzzy entropy, and the explicit fuzzy 
entropy formulation has also been proposed by numerous 
researchers [1-7]. Fuzzy entropy of fuzzy set explains that how 
much uncertainty fuzzy set has with respect to the 
corresponding crisp set.  

Next, the axiomatic definition of fuzzy entropy for fuzzy set 
has been proposed by Liu [7]. Definition has four properties for 
considering data. Numerous fuzzy entropies can be also 
obtained satisfying Definition 2.1. However, a few explicit 
fuzzy entropy design was shown in literatures [1-7]. We have 
designed several fuzzy entropies satisfying Definition 2.1, the 
proposed fuzzy entropies can be found out in our literatures 
[8,9]. The fuzzy membership function and crisp set pair are 
illustrated in Fig. 1. Where, crisp set crispA  is defined by the 

value of crisp set 0.5A . crispA  represents variable range by 

changing as 0 1crisp≤ ≤ . In Fig. 1, the value of crisp set 
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0.5A  has one when ( )A xμ ≥ 0.5, and is zero otherwise.  

 

crispA

Fig. 1 Membership functions of fuzzy set A  and crisp set 
0.5crispA A=

. 
 
Liu suggested axiomatic definition of fuzzy entropy [7]. 

Definition 2.1 [7] A real function, : ( )e F X R+→  is 

called the entropy on ( )F X , if e has the following properties: 

 
( )

* *

( 1) : ( ) 0, ( );

( 2) : ([1 / 2] ) ( );

( 3) : ( ) ( ), ;

( 4) : ( ) ( ), ( ),
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E e D D P X
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E e A e A A F X

of A
∈

= ∀ ∈

=

≤

= ∀ ∈

 

where [ ]1/2 X  is the fuzzy set in which the value of the 
membership function is 1/2 .  

Now it is possible to design fuzzy entropy that is satisfying 
Definition 2.1 as follows: 
Theorem 2.1 A real function 

 ( , ) 2 ( , ) 2 ( , )crisp crisp crisp crispe A A d A A A d A A A= ∩ + ∩  (1) 

is the normal fuzzy entropy on ( )F X . 

Proof : To prove fuzzy entropy (1), Definition 2.1 is utilized. 
For all ( )D P X∈ ,  

 ( , ) 2 ( , ) 2 ( , ) 0crisp crisp crisp crispe D D d D D D d D D D= ∩ + ∩ =  

is obtained. Because crispD  satisfies D . Hence (E1) is 

satisfied naturally. For (E2), ([1 / 2] ,[1 / 2] )crispX X
e satisfies 

maximum value. Let [1 / 2] [1]crisp XX
= ,  

2 ([1 / 2] ,[1 / 2] [1] ) 2 ([1] ,[1 / 2] [1] ) 1X X X X X Xd d∩ + ∩ =  

satisfies maximum value.  
(E3) is satisfied by  

* * * * * * * *( , ) 2 ( , ) 2 ( , )crisp crisp crisp crispe A A d A A A d A A A= ∩ + ∩

2 ( , ) 2 ( , ) ( , )crisp crisp crisp crispd A A A d A A A e A A≤ ∩ + ∩ = . 

Where, *
crisp crispA A= , * * *( , ) ( , )crisp crispd A A A d A A A∩ ≤ ∩ , 

and * * *( , ) 2 ( , )crisp crisp crisp crispd A A A d A A A∩ ≤ ∩  are also 

satisfied.  
(E4) is obvious with graphical explanation of Fig.1. With the 

distance property ( , ) ( , )C Cd A B d A B=  [7], it is obtained 
through  

( , ) 2 ( , ) 2 ( , )C C C C C C C C
crisp crisp crisp crispe A A d A A A d A A A= ∩ + ∩      

2 ( ,( ) ) 2 ( ,( ) )C C C C C C
crisp crisp crispd A A A d A A A= ∩ + ∩  

2 ( , ) 2 ( , )crisp crisp crispd A A A d A A A= ∪ + ∪ . 

Following equalities, 
( , ) ( , )crisp crisp crispd A A A d A A A∪ = ∩  

and ( , ) ( , )crisp crisp crispd A A A d A A A∪ = ∩  

are obtained from graphical explanation. Hence, 
( , ) 2 ( , ) 2 ( , )C C

crisp crisp crisp crispe A A d A A A d A A A= ∪ + ∪  

2 ( , )crisp crispd A A A= ∩ 2 ( , )crispd A A A+ ∩  

( , )crispe A A=  

is obtained. Hence (E4) is proved.                    
The corresponding crisp set for fuzzy set A  is defined by 

following corollary. 
Corollary 2.1 In theorem 2.1, crispA  is satisfied for all 

0 1crisp≤ ≤ . 
The fuzzy entropy in Eq. (1) satisfies for all value of crisp set 
crispA . Hence, 0.1A  and 0.5A  or some other 0.XA  can be 

satisfied. Now, it is interesting to search for what value of 
crispA satisfies the maximum or minimum entropies.  

Eq. (1) is rewritten as follows: 

 max

0
( , ) 2 ( ) 2 1 ( )crisp

x x

A Ax
e A A x dx x dxμ μ= + −∫ ∫  (2) 

Let ( ) ( )A A
d M x x
dx

μ= ; ( , )crispAe A  has been shown to be  

max
0 max( , ) 2 ( ) | 2( ) 2 ( ) |crisp

xx
A A xe A A M Mx x x x= + − − . 

The maxima or minima are obtained by differentiating (2): 

( , ) 2 ( ) 2 2 ( )crisp A Ae A A
d

x x
dx

μ μ= − + . 

Hence, it is clear that the point x satisfying 

( , ) 0crispe A A
d
dx

=  is the critical point for the crisp set. This 

point is given by ( ) 1 / 2A xμ = , i.e., crispA = 0.5A . The fuzzy 

entropy between A  and 0.5A  has a minimum value because 
( )e A  attains maxima when the corresponding crisp sets are 

0.0A  and 
maxxA . Hence, for a nonconvex and symmetric fuzzy 

set, the minimum entropy of the fuzzy set is equal to that of the 
crisp set 0.5A . This indicates that the corresponding crisp set 

that has the least uncertainty or the greatest similarity with the 
fuzzy set is 0.5A . 

In our previous results, more fuzzy entropies of fuzzy set A  
with respect to crispA  is represented as follows [8,10] 

 ( , ) ( ,[1] ) ( ,[0] ) 1crisp crisp X crisp Xe A A d A A d A A= ∩ + ∪ −  (3) 

 ( , ) ( ,[0] ) ( ,[1] )C C
crisp crisp X crisp Xe A A d A A d A A= ∩ + ∪  (4) 

 ( , )crispe A A = 1 ( ,[0] )crisp Xd A A− ∩ ( ,[1] )crisp Xd A A− ∪  (5) 

( , )d A B  is the Hamming distance between A and B , that 
is  

1
( , ) | ( ) ( ) |n

A i B ii
d A B x xμ μ

=
= −∑
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1

( ,[1] )
1

| ( ) 1 |
crispcrisp X

n

A A i
i

d A A x
n

μ ∩
=

∩ = −∑  is also satisfied. 

[0]X  and [1]X  are the fuzzy sets in which the value of the 

membership functions are zero and one, respectively, for the 
universe of discourse. 

Proofs of (3), (4) and (5) are found in our previous literature 
[8,10]. Proposed fuzzy entropies do not give the normal fuzzy 
entropy. The normal fuzzy entropy can be obtained by 
multiplying appropriate value to the right-hand side, which 
satisfies maximal fuzzy entropy is one.  

Next, uncertainty calculations are obtained through applying 
fuzzy entropy. Consider the students points for the examination. 
There are examination points of 65 students, 52.7 for mean and 
14.5 for standard variation as Table 1. 

 
Table 1. Examination points, mean and standard deviation of 
65 students. 

65 
students 
points 

82, 81.5, 76, 75, 75, 68, 67, 65.5, 65, 64.5, 64, 63.5, 
63, 63, 62.5, 62, 61, 61, 60, 60, 60, 59, 59, 59, 58, 58, 
58, 57.5, 57.5, 57, 56.8, 56, 55.5, 54, 53.5, 52.5, 52.5, 
52.5, 52.5, 52, 51, 51, 49.5, 48, 47.5, 46.5, 46, 45.5, 
45, 45, 44, 43, 41.5, 41, 40, 37, 37, 36, 33.5, 32, 31, 

27, 26.5, 21, 0 

Mean : 52.7, standard deviation : 14.5 

 
Now, let’s select 5 students randomly. Two times of 

selections are carried out. Normally, point distribution is close 
to the Gaussian distribution. In Fig. 2, Gaussian distribution   
is considered as the fuzzy membership function, and the chosen 
5 students scores are also shown in. 5 students’ scores are 
chosen randomly. In Fig.2(a), 5 students have 50, 52, 55, 57, 
and 59 points. Whereas, 12, 46, 53, 55, and 91 points are 
illustrated in Fig. 2(b). The second trial is closer to the mean 
value, whereas the first one is nearer to the membership degree 
in the view of membership average. Hence, it is hard to 
determine which one is reliable data for average level student. 
However, we can obtain the result that the first one is reliable 
data for average level student in the view of heuristic point. 
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Fig.2(a) Membership function and 5 students points 
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Fig.2(b) Membership function and 5 students points 

 
The average level student’s points are between 37 and 71, i.e, 
0.5

( ) 1A xμ =  when 37 71x≤ ≤ , 
0.5

( ) 0A xμ =  otherwise. In the 

view of fuzzy entropy, both cases are calculated for the 
problem of how much they are in the average level.  
 

Table 2. Sample, Membership value, and Fuzzy entropy for 
selected 5 data with Eq. (1) 

 Sample Membership value Fuzzy entropy 

50 0.983 

52 0.999 
55 0.987 
57 0.957 

Fig. 2(a)

59 0.910 

0.0656 

Average 54.6 0.980 0.0656 

12 0.019 

46 0.899 
53 1.000 
55 0.987 

Fig.2(b)

91 0.031 

0.0656 

Average 51.4 0.590 0.0656 

 
Computation results say that  

 0.5 0.5 0.5 0.5( , ) 2 ( , ) 2 ( , )e A A d A A A d A A A= ∩ + ∩  
2 (|1 0.983 | |1 0.999 |
5
|1 0.987 | |1 0.957 | |1 0.91|)

= − + −

+ − + − + −
            

0.0656= . 

In the above, 0.5( , )d A A A∩  has to be deleted because of 

distance between same points. Similarly, Fig. 2(b) shows that  

      0.5 0.5 0.5 0.5( , ) 2 ( , ) 2 ( , )e A A d A A A d A A A= ∩ + ∩  
2 | 0.019 0 | | 0.031 0 |)
5

= − + −  

2 |1 0.899 | |1 1| |1 0.987 |)
5

+ − + − + −  

0.0656= . 

Hence, the fuzzy entropy results indicate that two trials have 
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same degree of uncertainty. Furthermore, they show good 
certainty because of small uncertainty value. However, their 
data points are not proper to represent middle level. The reason 
for the same fuzzy entropy values of two trials is originated 
from the property of complementary, that is 

( ) ( ), ( )ce A e A A F X= ∀ ∈ . Now it is needed another approach 
to overcome this drawback of data selection problem.  

 
 

3. Modified Fuzzy Entropy Formulation 
 
Quantitative value of fuzzy entropy sometimes induces 

confusion like a data selection problem in Chapter 2. The result 
of Table 2 says that the uncertainties of two data group with 
respect to 0.5A  show equivalent. Main reason of that 

confusion is the complementary property. The shaded area of 
Fig. 3 represent small uncertainty for chosen data. 

 

crispA

Fig. 3 Complementary characteristic Feature of Membership 
function 

 
Data in shaded area has low fuzzy entropy. However, its 

relationship to average level is not nearly connected with. 
Hence it is reasonable to consider another corresponding crisp 
set crispA  of fuzzy set A . By Corollary 2.1, crispA  has to be 

chosen for the well matched corresponding 0.1A  and 0.2A  or 

some other 0.XA . Now, it is interesting to search what value of 

0.XA  is proper to compute uncertainty of the membership 
function itself. For 0.5crisp > , uncertainty in the low 
membership function data is low. Its data uncertainty represents 
similar value of high membership function data. Hence, it is not 
appropriate to consider the corresponding crisp set as higher 
value of 0.XA . Whereas, the lower the membership function is 

the higher the uncertainty has as the fuzzy entropy for 
0.5crisp < .  

Assumption 3.1  
1) Membership function has to be symmetric and non-
convex with respect to both sides.  
2) Area of fuzzy membership function has to be more than 
total half area.  

Theorem 3.1 Under the assumption 3.1 a real function 

 0.0 0.0( , ) 2 ( , )e A A d A A=  (6) 

is the normal fuzzy entropy on ( )F X . 

Proof : Proof procedures are easily followed.  For all 
( )D P X∈ ,  

 0.0 0.0( , ) ( , ) 0e D D d D D= =  

is obtained. Because 0.0D  satisfies D  itself. Hence (E1) is 
satisfied naturally. For (E2), 0.0([1 / 2] ,[1 / 2] )X X

e satisfies 

maximum value. Let 0.0[1 / 2] [1]XX
= ,  

2 ([1 / 2] ,[1] ) 1X Xd =  

satisfies maximum value.  
(E3) is satisfied by  

* * * *
0.0 0.0( , ) ( , )e A A d A A= 0.0 0.0( , ) ( , )d A A e A A≤ = . 

Where, *
0.0 0.0A A= , inequality can be explained by Fig. 4 and 

definition of sharpening of fuzzy membership function.  
 

A

*A

* *
0.0( , )d A A

0.0( , )d A A
 

Fig. 4 Components of 0.0( , )d A A and * *
0.0( , )d A A  

 
(E4) is obvious using the graphical explanation. The 

components of 0.0( , )e A A  and 0.0( , )C Ce A A  are illustrated in 

Fig 5.  
 

A

CA

0.0( , )C Cd A A

0.0( , )d A A
 

Fig. 5 Components of 0.0( , )d A A and 0.0( , )C Cd A A  
 
Hence, 

0.0 0.0( , ) ( , )e A A d A A= 0.0 0.0( , ) ( , )C C C Cd A A e A A= =  

is satisfied because of distance property, 
( , ) ( , )C Cd A B d A B= [7].   

Corollary 3.1 With crispA  approaches to 0.0A , fuzzy entropy 

(1) becomes (6).  
In Corollary 3.1, fuzzy entropy is changed by  

 0.0 0.0 0.0 0.0( , ) 2 ( , ) 2 ( , )e A A d A A A d A A A= ∩ + ∩  (7) 

as 0.0nearA A→ . In the above, 0.0A A A∩ =  is satisfied 
because 

0.00.0 min{ ( ), ( )}A AA A x xμ μ∩ =  and 
0.0

( )A xμ  is one 

over whole universe of discourse. Then, (7) satisfies  
0.0 0.0 0.0( , ) 2 ( , ) 2 ( , ) 2 ( , )e A A d A A d A A d A A= + = . 

Hence, (6) satisfies fuzzy entropy definition. 
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Corollary 3.2 With crispA  approaches to 1.0A  or maxA , fuzzy 

entropy (1) becomes total area of fuzzy membership function 
itself.  

From Corollary 3.2 fuzzy entropy value can be often collided 
with the meaning of uncertainty. It means that high uncertain 
data may have low fuzzy entropy value. In (6), 0.0A  can be 

naturally replaced into 0.1A  to calculate the fuzzy entropies of 

Fig.2. Their entropy calculations are equivalent each other. 
Because all data of Fig.2 are contained inside of 0.0A  or 0.1A . 

Next, fuzzy entropy calculations are carried out with 
example in Chapter 2. Corresponding crisp set for fuzzy set is 
considered by 0.0crispA A= . 

 
Table 3. Sample, Membership value, and Fuzzy entropy for 
selected 5 data with Eq. (5) 

 Sample Membership value Fuzzy entropy 

50 0.983 

52 0.999 
55 0.987 
57 0.957 

Fig. 2(a) 

59 0.910 

0.0656 

Average 54.6 0.980 0.0656 

12 0.019 

46 0.899 
53 1.000 
55 0.987 

Fig.2(b) 

91 0.031 

0.8256 

Average 51.4 0.590 0.8256 

 
Fuzzy entropy comparison between Fig.2(a) and Fig.2(b) 

shows that the proposed fuzzy entropy (6) discriminate the data 
group. Fig. 2(a) calculation is represented by 

0.5 0.0( , ) 2 ( , )e A A d A A=  

 
2 (|1 0.983 | |1 0.999 |
5
|1 0.987 | |1 0.957 | |1 0.91|)

= − + −

+ − + − + −
            

0.0656= . 

Whereas, Fig. 2(b) shows that  

0.0 0.0( , ) 2 ( , )e A A d A A=   

2 |1 0.019 | |1 0.899 |
5
|1 1| |1 0.987 | |1 0.031|)

= − + −

+ − + − + −
 

0.8256= . 

Then, it is clear that the selection of Fig.2(a) illustrate good 
performance for the average level students. The difference 
between the result of Table 2 and that of Table 3 is originated 
from 0.5A and 0.1A . Data sample of 12 and 91 are beyond of 

range 0.5A , hence their entropy value were small. However 

their entropy values are bigger when they lie inside of 0.1A  
than when 0.5A  was.  

 
 

4. Conclusions 
 
Calculation of data fuzziness has been carried out by fuzzy 

entropy. Fuzzy entropies for fuzzy sets were developed by 
considering the crisp set “near” the fuzzy set. The minimum 
entropy of fuzzy set can be obtained when the corresponding 
crisp set is satisfied at 0.5crispA A= . By the fact that low 

entropy represents high certainty reliable data selection of 
average level students was done. However, obtained results are 
not satisfactory because of complementary characteristic of 
fuzzy entropy definition. To overcome this drawback another 
crisp set was considered by varying the crispA . Proposed fuzzy 

entropy is obtained by approaching crispA to 0.0A . Then 

heuristically reasonable performance is obtained with fuzzy 
entropy calculation. Data analysis is also discussed after 
entropy calculation was done. 
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