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Abstract 
In this paper we introduce stronger form of the notion of cover so-called p-cover which is more appropriate. According to this cover we 
introduce and study another type of compactness in L-fuzzy topology so-called C*-compact and study some of its properties with some 
interrelation. 
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0. Introduction 
 
The notion of compactness is one of the most important 

concepts in general topology, but it seems that the research 
about this notion in fuzzy setting is not effective. Therefore, the 
problem of generalization of the classical compactness to fuzzy 
topological spaces has been intensively discussed over the past 
four Decades. Chang [4] was first introduced the notion of 
fuzzy compactness, but this notion not seems very natural in 
fuzzy setting, because it has many deviations and a fuzzy 
topology with one point fail to be compact (see[25]). So 
various kinds of fuzzy compactness have been presented and 
studied to avoid these deviations such as [1,3, 5-9,16, 21, 23].  

The fuzzy compactness in L-fuzzy topological spaces was 
introduced by Gantner etc.al [8]. Hutton[12] introduced another 
notion of compactness in L-fuzzy topological spaces. Zhao[27] 
generalized the N-compactness [23] to L-fuzzy topological 
spaces. Warner and McLean [21] introduced another notion of 
L-fuzzy compactness, after that Kudri [13] proposed an 
extension to arbitrary L-fuzzy sets of compactness defined in 
[21], after that many authors introduced some investigations of 
L-fuzzy compactness such as [2,19,20].   

 
In this paper we introduce another type of compactness in L-

fuzzy topological space so-called C*-compactness which is 
extension, development of Chang's notion [4] and Hutton's 
notion of compactness [12] and is avoid many deviations also 
many interesting properties are discussed. 

 
 

1. Preliminaries 
 

Throughout this paper, ( , ,L ≤ ′) denotes a fuzzy lattice, i.e. a 

completely distributive lattice with order-reversing evaluative 
operator aa ′ , and its smallest element and largest element 

are 0,1 respectively ( 0 1≠ ). If XA ⊂ , then Aχ  denotes 

the characteristic function of A . A mapping from X  into 
L is called an L-Fuzzy sets on X (L-FSs, for short). The 

collection of all L-FSs on X, denoted by 
XL can be naturally 

seen as a fuzzy lattice )',,,,( ∧∨≤L . 

The smallest element and largest element of 
XL are 1,0 , 

respectively,  Where xx =)(0 ,  .)(1 Xxxx ∈∀=   
We denote by α  an L-FS which takes the constant 

value L∈α  Xx∈∀ . An L-Fuzzy topological space (L-FTS, 

for short), is a pair ),( δXL  where δ  is called an L-Fuzzy 
topology on X and, { }δδ ∈′=′ AA : . We use the notation 

{ }0)(:)( >∈= xAXxAS  to denote the support of A . An L-
fuzzy set B  is called finite if )(AS  is finite. The set of all 

L-Fuzzy points in XL is denoted by )( XLFP . We say that αx  

is a member of XLA∈ denoted by Ax ∈α  if and only if 

)(xA≤α .For any XLA∈ ,  
define { }αα ≤/∈= )(: xAXxA , 1L∈α  and 

{ }αα ≥∈= )(: xAXxA , 0L∈α , where }1{\1 LL =  and 
}0{\0 LL = .  An L-fuzzy open set δ

α
∈xO  contai-ning αx  is 

called a neighborhood (nbd, for short) of αx . The set of all 

neighborhoods of αx  will be denoted by )( αxN .  

Definition 1.1: [15] Let , XA B L∈  , Then A  is called quasi-
coincident with B , denoted by A q B , iff there exists an 
element Xx∈  such that )()( xBxA ′≤/ and, A  is not 

quasi-coincident with B denoted by A q⁄ B  
iff, )()(, xBxAXx ′≤∈∀ . 

Proposition 1.2: [15] Let , , XA B C L∈  }:{ JiAi ∈ and 

)(, XLFPyx ∈βα . Then:  

1) A q⁄ ,B A B′⇔ ⊆  

2) A 0=B∩ ⇒ A q⁄ B  ,  
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3) A q⁄ B , ABC ⇒⊆ q⁄ C , 

4) αx q ( JiAi
Ji

∈∃⇔
∈

0)∪  such that αx q
0i

A , 

5) αx q ( i
Ji

A
∈
∩ ) ⇒ αx q iA  Ji∈∀  

6) αx q⁄ y x y orβ ⇔ ≠ andyx =(  )βα ′≤ . 

Theorem 1.3: [15] (a) Let ),( τX be a topological space. 

Then: 
i) { }LALA X

L ∈∈∈= αττω α ,:)( , 

ii) { }τχδ ∈= AA :01  and  

iii) { }τδτ ∈∈= )(: ASLA X are L-Fuzzy topologies 

on X induced by . 

(b) Let ),( δXL be an L-FTS. Then: 

i) { }δτδ ∈= AAS :)(  and   

ii)  { }δχδ ∈⊂= AXA :][   

are ordinary topologies on X induced by δ . 

Lemma 1.4: [15] Let ),( τX  be a topological 

space XBandLA X ⊂∈ . Then: 

i) L∈∀∈ αδα τ  . 

ii) LU U ∈∀∈⇒∈ αδαχτ τ , in 

particular, τδδ ≤01 . 

iii) ∈A )(τωL  iff ( τα ∈A 1L∈∀α ), 

iv) τ∈B  iff ∈Bχ )(τωL . 

Proposition 1.5: Let X  be an infinite set and ta  be any 

fixed L-fuzzy point in X . Then the following families: 

i) t
X

a aLA
t

:{ ∈=δ q⁄ A } }1{∪   

ii) }0{})(:{ ∪′∈=∞ finiteisASLA Xδ   

iii)
t

t
a

a δδδ ∪= ∞∞ , are L-fuzzy topologies on X .  

 is called excluded L-fuzzy topology, ∞δ  is called 

cofinite L-fuzzy topology and ta
∞δ  is called the fort L-

fuzzy topology. 
 

Proof.  Straightforward  
Definition 1.6: [15] An L-FTS ( , )XL δ  is said to be: 

1) L-FT1 iff )(, XLFPyx ∈∀ βα with  αx q⁄ βy  

implies αx q⁄ βy and αx q⁄ βy  

2) L-FT2 iff )(, XLFPyx ∈∀ βα with αx q⁄ βy  

implies there exist 
αx

O and δ
β
∈yO  such that 

αx
O q⁄ 

βyO  

3) L-FR0 iff )(, XLFPyx ∈∀ βα with αx q⁄ βy   

implies αx q⁄ βy , 

4) L-FR1 iff )(, XLFPyx ∈∀ βα with αx q⁄ βy   

implies there exist 
αx

O and δ
β
∈yO  such that 

αx
O q⁄ 

βyO . 

5) L-FR2 (L-fuzzy regular) iff for every  

( )),( δα ′∈∈ ALFPx X with αx q⁄ A implies there  

exist 
αx

O and δ∈AO  such that 
αx

O q⁄ AO . 

6) L-FR3 (L-fuzzy normal) iff for every δ ′∈BA, with  

A q⁄ B  implies there exist AO and δ∈BO  such  

that AO q⁄ BO . 

7) L-FT3 iff it is L-FR2 and L-FT1. 
8) L-FT4 iff it is L-FR3 and L-FT1. 

Definition 1.7: [8] Let ),( δX be an L-FTS and L∈α . A 

family δη ⊆  is called an open ∗α -shading of X  if for 

every Xx∈  there exists η∈U  with α≥)(xU . 

The L-FTS ),( δX  is called ∗α -compact iff each ∗α -

shading of X  has a finite ∗α -subshading of X . 
Definitions 1.8: [14]  

(1) The relation }1,0{: →× XX LLr  is called an L-

fuzzy proximity on X  if it satisfies the following axioms: 

P1) XLBAABrBAr ∈∀= ,),(),(  

P2) XLCBACArBArCBAr ∈∀=∪ ,,),().,(),(  

P3) XLAAr ∈∀= 1)0,(  

P4) XLBABArqBA ∈∀=⇒ ,0),(  

P5) XLDBAr ∈∃⇒=1),( such that 

.1),(),( =′= DBrDAr  

The pair ),( δX  is called L-fuzzy proximity space (for 

short,L-FPS). 
(2) The L-FPS ),( rX  is called separated if it satisfies the 

axiom, P4') βαβα yqxyxr ⇒= 0),(  for all 

)(, XLFPyx ∈βα . 

(3) In the L-FPS ( , )X r  we shall write BA>>  iff 

1),( =′ABr and we say A  is r -nbd of B . 

Propositions 1.9: [14]  
(1) Every L-fuzzy proximity space ( , )X r  induces an L-

fuzzy topology rδ  on X  given by the following 

closure operator XX LLc →:  where, 
( ) { : ( , ) 1}X XC A A B L r A B A L′= =∩ ∈ = ∀ ∈   
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(2) For every L-FT4 space ),( δXL , there exists an L-fuzzy 

proximity r on X  given by, ⇔=1),( BAr A  q⁄ 

B  such that δδ =r . 

(3) Let ),( rX  be an L-FPS. Then we have the following: 

(i) AqxAxr αα ⇔= 0),( , 

(ii) XLBABArBAr ∈∀= ,),(),( . 

(iii) If )( XLFPx ∈α , for every 
αx

O  there exists ∗
αx

O  

such that, ααα
xOO xx >>>> ∗ . 

 
 
2. C-Compact L-Fuzzy  topological spaces 

 

Definition 2.1: Let ),( δXL be an L-FTS and XLA∈ . Then 

the family δγ ⊆  is called an open p-cover of A  iff 

Axt ∈∀  there exists γ∈U  such that Uxt ∈ . A 

subfamily β  of an open p-cover γ  of A , which is also an 

open p-cover of A  is called an open p-subcover of A . 
Clearly, every open p-cover is an open cover. The converse 

may not be true in general as it can be shown by simple 
examples.  
Definition 2.2: Let ),( δXL  be an L-FTS and XLA∈ . 

Then A  is called a C-compact iff every open p-cover of A  
has finite p-subcover 
Definition 2.3:  

An L-FTS ),( δXL  is called a C*-compact iff every closed 

L-fuzzy subset of X  is a C-compact space.  
Proposition 2.4:  

If ),( δXL is C*-compact, then ),( δXL  is C-compact. 

The converse of the above proposition may not be true in 
general as shown by the following example. 
Example 2.5: Let X  be an infinite set, ]1,0[=L  

and }5.0:{ ⊆∈= ALA Xδ }1{∪  Then it is easy to see 

that ),( δXL  is a C-compact but it is not a C*-compact. 

Indeed the set 5.0=A  is closed in, 

),( δXL and the family, }:{ 5.0 Xxx ∈=γ  is an open p-

cover of A which has no finite subcover. Hence ),( δXL is 

not C*-compact. 
Examples 2.6:  

1) Let ),( δXL be any L-FTS. Then every finite L 

fuzzyset is a C-compact set. And so if X  is a finite, 

then ),( δXL is a C*-compact space. 

2) The discrete L-FTS ),( δXL  is a C*-compact iff X  

is a finite set. 

3) Then L-FTS ),( C
XL δ , where }:{ LC ∈= ααδ is 

C*-compact. 
Examples 2.7:  

1) Let ),( ∞δ
XL be the cofinite L-FT defined in 

proposition (1.5). Then ),( ∞δ
XL is C*-compact. 

Proof. Let F  be a closed subset in ),( ∞δ
XL . Then F is 

a finite or equal to X . 
If F is a finite, then it is a C-compact from (i) of example 
(2.6). 
If XF = , suppose η  be an open p-cover of X . Then 

choose,  )(1
XLFPx ∈ , there is η∈kU such 

that kUx ∈1 . Since ∞∈δkU  , then kU ′ is finite. Now 

take, 

},...,2,1,)(:{ 1 niUSyy k
i =′∈=ω which is finite, 

thus i
i Uy ∃∈∀ ω1 such that niUy i

i ,...,2,1,1 =∈  

and so the family, }{},...,2,1:{ ki UniU ∪=  is a          

finite open p-subcover of X , so X  is C-compact. Hence 

),( ∞δ
XL is a C*-compact space. 

2) Let ),( taXL ∞δ  be the L-FTS defined in proposition 

(1.5). Then  ),( taXL ∞δ  is a C*-compact space. 

Proof. Let δ ′∈G . Then either G  is a finite or ta q G . 

Then we have two cases: 
1) If G  is a finite, then G  is a C-compact from (i) of 
example (2.6). 
2) If ta q G . Let η  be an open p-cover of G . Then  

such that )()( aGkaG aVa ⇒∈ q⁄ kV ′ . Since kV ′  is closed, 

then )( kVS ′  is finite. Now put, 

},...,2,1),(:{ )( niVSxx k
ii

xG i =′∈=ω . 

Thus for every ηω ∈∃∈ i
i

xG
Ux i )( such that 

niUx i
i

xG i ,...,2,1,
)(

=∈ , 

and so the family ∪= },...,2,1:{ niUi  }{ kV is a finite 

open p-subcover of G , so G  is a C-compact set. 

Hence ),( taXL ∞δ  is C*-compact.  

Definition 2.8:  

Let ),( δXL be any L-FTS and X
i LJiA ⊆∈= }:{η  

Then:  
i) η  is said to be have q-intersection with respect to ( w.r.t., 

for short) XLV ∈  iff  there exists Vxt ∈ such that 

it Aqx  for all Ji∈ . 
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ii) η  is called has the finite intersection property (FIP, for 

short)  w.r.t. XLU ∈ iff every finite subfamily of η  

has a q-intersection w.r.t. .U  
Theorem 2.9:  

Let ),( δXL  be an L-FTS. An L-FS XLA∈  is a C-

compact iff every family of closed L-FSs in X  having the 
FIP w.r.t. A  has q-intersection w.r.t. A . 
Proof.  

Suppose XA L∈ is a C-compact. Let δη ′⊆∈= }:{ JiFi  

be a family of closed L-fuzzy sets in X  which has the FIP 
w.r.t. A . Now suppose η  has no a q-intersection w.r.t. A . 

Then JiAxt ∈∃∈∀ such that tx  q⁄ iF  and hence 

δη ⊆∈′=′ }:{ JiFi  is an open p-cover of A . Since A  

is a C-compact, so there exists a finite p-subcover of η′ , say, 

.},...,2,1:{ η′⊂=′ nsF
si Therefore, },...,2,1:{ nsF

si
=  

has no q-intersec- tion w.r.t. A , contradiction that η  has the 

FIP w.r.t. A .  

Conversely, let δγ ⊆∈= }:{ JiUi  be an open p-cover 

of A . Then, δγ ′⊆∈′=′ }:{ JiUi has no q-intersection 

w.r.t A . Thusγ ′  has not the FIP w.r.t. A . So there exist 

Jiii n ∈,...,, 21  such that, },...,2,1:{ nsU
si
=′ has no q-

intersection w.r.t. A . Then  },...,2,1:{ nsU
si
= is a finite 

open p-subcover of A . Hence A  is C-compact. 
Theorem 2.10:  

Every closed subspace of a C*-compact space is a C*-
compact. 
Proof.  Straightforward. 
Lemma 2.11:  

The continuous image of C-compact set is C-compact. 

Proof. Let ∗⊆∈ δ}:{ JiBi be an open p-cover of )(Af  

in .Y  Then the family δ⊆∈− }:)({ 1 JiBf i  is an open 

p-cover of A  in X . Thus there exists a finite p-subcover of 

A  say, 

)}(),...(),({ 111
21 niii BfBfBf −−−  and so, 

)}(),...(),{(
21 niii BBB  is a finite p-subcover of )(Af . 

Hence )(Af  is a C-compact. 

Theorem 2.12:  
The continuous image of a C*-compact space is a C*-

compact. 
Proof. Follows immediately from the above lemma.  

Theorem 2.13: Let ),( τX  be a topological space. If 

))(,( τωL
XL  is C-compact, then ),( τX  is compact. 

Proof. Let Γ  be an open cover of X . 

Then }:{ Γ∈UUχ  is an open p-cover of X  in 

))(,( τωL
XL . Indeed, XxXxt ∈∈∀ , and so there 

exists, Γ∈U  such that Ux∈ , then Utx χ∈ . Since 

X  is a C-compact, then there is a finite open p-subcover say, 
},...,2,1:{ ni

iU =χ  and so the family  

},...,2,1:{ niUi =  is a finite open subcover of X . 

Hence ),( τX  is compact. 

The converse of the above theorem may not be true in 
general. This can be shown by the following example. 
Example 2.14: 

Let X  be an infinite set, ]1,0[=L  and ∞τ be the 

cofinite topology on X , then ))(,( ∞τωL
XL  is not C-

compact. 
Proof. Take the family )(}:{ XPNnAn ⊂∈ such that 

nA  cover of X  but no finite subfamily does and such 

that nANn ,∈∀  is a countable complement. For all 

Nn∈∀ . Put, ,....},{ 21
nn

n xxA =′ and let 

}:{ NnVn ∈=η  be a family of fuzzy sets in X  defined 

by: 

 ,,1)( nn AxxV ∈∀=  

 ,...,2,1,11)( =−= J
J

xV n
Jn  

then Nn∈∀ , )( ∞∈ τωLnV . In fact for each 

Nn∈ there exists NJ ∈0  such that if 0JJ > , then, 

01111
0

>−>−
JJ

 and so,  

},...,,{)(
021

n
J

nn
n xxxVS =′ is finite. Hence for all 

Nn∈ )( ∞∈ τωLnV . Next for every Xx∈  there 

exists Nn∈  such that nAx∈  and so,  1)( =xVn  

that is, )(1
XLFPx ∈∀  there exists Nn∈  such that 

nVx ∈1 . This shows that η  is an open p-cover of X  

which has no finite p-subcover. Hence ))(,( ∞τωL
XL  is not 

a C-compact space. 
Theorem 2.15: Let ),( τX be a topological space. Then 

),( 01δ
XL  is C*-compact if and only if  ),( τX  is 

compact, where }:{01 τχδ ∈= UU . 

Proof.  
Let ),( τX  be a compact and let 01δ ′∈G , then 
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AAG A ⇒′∈= τχ , is compact and so GA =χ is C-

compact. Hence ),( 01δ
XL  is a C*-compact space.                   

Conversely, is similar to the proof of theorem (2.13). 
That is, a C*-compactness is good extension in the sense of 

Gottwald [10]. 
Theorem 2.16: Let ),( δXL  be an L-FTS. If ),( δXL  is 

a C-compact space, then ])[,( δX  is compact. 

Proof. The proof is similar to the proof of theorem (2.13). 
The converse of the above theorem may not be true in general. 
This is can be shown by example (2.14)  where, 

∞∞ =ττω ])([ L . 

Theorem 2.17: Let ),( τX be a topological space. If 

),( τδ
XL  is a C-compact, then ),( τX  is compact. 

Proof. It is similar to the proof of the above theorem (2.13). 
The following example shows that the converse of the above 
theorem is not true in general. 
Example 2.18:  

Let ]1,0[],1,0[ == LX  andτ  be a usual topology on 

X . We know that ),( τX  is compact. Now for each 

)1,0(∈a , define X
a LV ∈  by:  

,],0(,1)( axifx
a

xVa ∈=  

,,1)(0 XxxxV ∈∀−=  

,]1,0(,
1
1)( ∈
−
−= xif

a
xxVa  

.,)(1 XxxxV ∈∀=  

Then τδ∈aV   )1,0(∈∀ a  and τδ∈10 ,VV . Clearly the 

family, })1,0(:{},{ 10 ∈∪= aVVV aγ  is an open p-

cover of X  which has no a finite open p-subcover. Hence X  
is not a C-compact space.  

One can easily shows the following lemma. 
Lemma 2.19: Let ),( δXL  be an L-FTS. Then δγ ⊆  is 

an open p-cover of X  if and only if γ  is an open ∗1 -
shading of X . 
Proposition 2.20:  

Let ),( δXL  be an L-FTS . Then ),( δXL  is C-

compact if and only if  ),( δXL  is ∗1 -compact. 

Proof. Follows directly from the above lemma. 
Definition 2.21: [8,11] 

The L-fuzzy unit interval )(LI is the set of all monotone 

decreasing maps L→ℜ:λ satisfying: 
,,01)() ℜ∈<= ttforti λ  

,,10)() ℜ∈>= ttfortii λ after identification 

of ℜ∈ Lμλ, iff  

andtt )()( −=− μλ )()( +=+ tt μλ  

ℜ∈∀ t , where ),(inf)( st
ts
λλ

<
=−  

)(sup)( st
ts
λλ

>
=+ .  

The usual L-fuzzy topology on )(LI is generated from the 

subbase, }:,{ ℜ∈tRL tt  , where )(][ ′−= tLt λλ                  

and )(][ += tRt λλ . It is follows that  

},:,,{ ℜ∈∧ baLRLR baba is a base or usual L-fuzzy 

topology on )(LI  also, },:{ ℜ∈∧ baLR ba is another 

base for usual L-fuzzy topology on )(LI .  

Gunter, etc. al [8] showed that )(LI  is ∗1 -compact, 

hence from proposition (2.20) we have the following result. 
Theorem 2.22: The L-fuzzy unit interval )(LI  is a C-

compact. 
Theorem 2.23: If the Cartesian product 

),( sSssSs
X δ

∈∈
ΠΠ ,where φ≠sX  for every Ss∈  is a 

C*-compact, then all L-FTSs ),( ssX δ  are C*-compact. 

Proof.  
The proof follows from theorem (2.12) and from fact that all 

projections ssSss XXP →Π
∈

:  are continuous. 

Definition 2.24: [17]  

Let }:),{( SsL s
X s ∈δ  be a family of pairwise 

disjoint L-FTSs and let sSs
XX

∈
∪= . Define the sum topology 

sSs
δδ

∈
⊕=  of }:{ Sss ∈δ on XL , as follows 

}.:{ SsXVLV ss
X ∈∀∈∩∈= δδ  

The pair ),( δXL  is called the sum space of 

}:),{( SsL s
X s ∈δ  and denoted by

Ss∈
⊕ ),( s

X sL δ . 

Theorem 2.25:  The sum space ),( δXL  of the family 

,:),{( SsL s
Xs ∈δ  }finiteisSwhere  of pairwise 

disjoint L-FTSs is C*-compact iff ),( s
X sL δ  is C*-

compact .Ss∈∀  .  

Proof. Straightforward. 
 
 

3. Separation axioms and C*-compactness 
 

Theorem 3.1: Let ),( δXL be an L-F  space 

and XLA∈  be a C-compact, then for every closed subset B  
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such that B q⁄ A  ,AO∃ δ∈BO  such that AO q⁄ 

BO . 
Proof. Since ),( δXL  is L-FT3 , then for every Axt ∈  

there exist ,
txO δ∈tx

BO )(  such that AO∃ q⁄ 

tx
BO )( . Clearly }:{ AxO txt

∈  is an open p-cover of 

A . Since A  is C-compact, then there exists a finite p-

subcover, say , },...,2,1:{ niOi
xt

= .  One readily 

verifies that i
x

n

iA t
OO

1=
∪=  and, 

i
tx

B

n

i
B OO )(

1=
∩=  

have the required property. 

Theorem 3.2: Let ),( δXL be an L-F  

space, )( X
t LFPx ∈ and let A  be C-compact such that 

tx q⁄ A , then there exists ,
txO  δ∈AO  such that 

txO q⁄ 

AO . Moreover, if BA,  are C-compact such that A q⁄ B  

then there exists AO  and δ∈BO  such that  AO  q⁄ 

BO .  

Proof.   
The proof is similar to the above proof. 

Theorem 3.3:  
Every a C–compact set of L-F  space is closed. 

Proof. 

Let A  be a C-compact set in L-FT2 space ),( δXL . Then 

from the above theorem we have for every tx q⁄ A  there 

exists δ∈
txO  such that 

txO q⁄ A , that is, for every 

Axt ′⊆  there exists δ∈
txO  such that AO

tx ′⊆ . 

So A′  is open in X . Hence A  is closed. 
Theorem 3.4:  

Let ),( δXL , ),( ∗δYL  be L-FTSs and let  

YXf →:  be a continuous map of a C*-compact space 

),( δXL  to an L-FT2 ),( ∗δYL . Then )()( AfAf = . 

Theorem 3.5:  Every continuous map of a C*-compact space 
to an L-FT2 space is closed. 
Proof.  Follows immediately from the above theorem. 
Corollary 3.6:  Every continuous one-to-one map of a C*-
compact space onto L-F  space is a homeomorphism. 

Theorem 3.7: Every C*-compact, L-F  space is an L-F  

space. 
Proof.  

Let ),( δXL be a C*-compact, L-F  space and let 

δ ′∈21 , AA  such that 1A q⁄ 2A . Since ),( δXL is a C*-

compact, then 21, AA  are C-compact (by theorem 2.10) and 

so from theorem (3.2) there exist δ∈
21

, AA OO  such that 

1AO q⁄ 
2AO . Hence ),( δXL  is L-F  .  

Theorem 3.8:  Let ),( δXL  be L-F  

space. Then ),( δXL is L-F  space iff every C-compact 

set is closed. 
Theorem 3.9:  

Every C*-compact, L-F  space is L-fuzzy regular (L-

F ). 

Proof.  Let ),( δXL  be a C*-compact, L-F  space and 

let δ′∈F  with, tx q⁄ F . Then for all L-FP Fyr ∈  

we have tx q⁄ ry  . Since ),( δXL  is L-F , then there 

exist 
txO , δ∈

ryO  such that,
txO q⁄ 

ryO . Then 

}:{ FyO ryr
∈ is an open p-cover of F . Since 

),( δXL  is a C*-compact, then F  is a C-compact, hence 

there exists a finite p-subcover, say,  

},...,2,1:{ niOi
yr

= of F . Now take 

i
r

t

y
x

n

i
OU )(

1=
∩= and i

y

n

i r
OU

1=
∪= then δ∈VU ,  and 

VFUxt ⊆∈ ,  and U q⁄ V . Hence ),( δXL is L-

fuzzy regular (L-F ). 

Theorem 3.10:   
Every C*-compact, L-FR1 space is L-fuzzy normal (L-F ). 

Proof.  
The proof is similar of the proof of the above theorem. 
Now from theorems (3.9),(3.10) we have the following result. 

Theorem 3.11:   

Let ),( δXL  be C*-compact. Then the following 

statements are equivalent:  

i) ),( δXL is L-F  

ii) ),( δXL is L-F  

iii) ),( δXL is L-F  and L-fuzzy normal space (L-F ). 

Theorem 3.12:  

Let ),( δXL  be an L-FT2 and a C*-compact space. Then 

there exists a unique compatible separated L-proximity relation 
, given by: 

 ABAr ⇔=1),( q⁄ B . 

 
Proof. 
 It is follows from (2) of proposition (1.9) and theorem (3.7) 

that r  defines an L-fuzzy proximity on X . Now let ∗r be 
an another L-fuzzy proximity on X . Then from (3ii) of 
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proposition (1.9) and from (P4) of the definition (1.8) it follows 

that if 0),( =BAr , then 0),( =∗ BAr . Now let 

1),( =BAr  we have to prove that 1),( =∗ BAr . Since  

A q⁄ B , then for every Axt ∈ , 
′

B is an open L-FS 

contains tx  , so for some 
txO  , tx xOB

t
>>>>

′
. The 

family }:{ AxO txt
∈=γ  is an open p-cover of A  . 

Since A  is closed subset of C*-compact ),( δXL , then 

A  is C-compact and so γ  has a finite p-subcover say, 

},...,2,1:{ niOi
xt

= . Now 

i
xt

OB >>
′

 , for ni ,...,2,1= .  

So, AOB i
xi t
>>∨>>

′
 and hence AB >>

′
. Thus 

),(1),( BArBAr ∗∗ == . Then the result. 
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