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Abstract

In this paper, we propose new method to calculate the distance between intuitionistic fuzzy sets (IFSs) based on the three
dimensional representation of IFSs and analyze the relations of similarity measure and distance measure of IFSs. Finally,
we apply the proposed measures to pattern recognitions.
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1. Introduction

Fuzzy set theory, proposed by Zadeh [21], has showed
successful applications in various fields. In fuzzy set the-
ory, the membership of an element to a fuzzy set is a sin-
gle value between 0 and 1. But in reality, it may not al-
ways be certain that the degree of nonmembership of an
element in a fuzzy set is just equal to 1 minus the degree
of membership. That is to say, there may be some hes-
itation degree. So, as a generalization of fuzzy sets, the
concept of intuitionistic fuzzy sets (IFSs) was introduced
by Atanassov [1, 2, 3]. Burillo and Bustince [5] pointed
out that this notion coincides with the notion of vague sets
proposed by Gau and Buehere [9]. These IFSs describe the
objective world more realistic, practical and accurate. They
have been widely studied and applied in various areas, such
as logic programming [4], decision making [7, 15], pattern
recognition [10, 11, 12, 13, 14, 18] and medical diagno-
sis [8, 17], and seem to have more popular than fuzzy sets
technology.

As important contents in fuzzy mathematics, similar-
ity measure and distance measure between IFSs have been
attracted many researchers. Chen [6], Chen and Tan [7]
proposed several similarity measures for measuring the de-
gree of similarity of vague sets. Li and Cheng [11] and
discussed similarity measures between IFSs and showed
how these measures may be used in pattern recognition
problems. However, Li and Cheng’s similarity measures

may not be effective in some cases. To overcome the
drawbacks of Li and Cheng’s methods, Liang and Shi [13]
and Mitchell [14] made some modifications, respectively.
Szmidt and Kacprzky [16] proposed four distance mea-
sures between IFSs that were in some extent based the ge-
ometrical interpretation of IFSs, and have some good ge-
ometric properties. Hung and Yang [10] proposed another
method to calculate the distance between IFSs based on
the Hausdorff distance. They used this distance to gener-
ate several similarity measures between IFSs that are suited
to be used in linguistic variables. Wang and Xin [19] pro-
posed several distance measures between IFSs and applied
those measures to pattern recognitions.

In this paper, we propose new method to calculate the
distance between IFSs based on the three dimensional rep-
resentation of IFSs and analyze the relations of similarity
measure and distance measure of IFSs. Finally, we apply
the proposed measures to pattern recognitions.

2. Basic notions of IFSs

In the following, we firstly recall basic notions and def-
initions of IFSs which can be found in [1, 2, 3].

Let X be the universe of discourse. An IFS A in X is
an object having the form

A = {(x, µA(x), νA(x)) : x ∈ X}

where µA, νA : X → [0, 1] denote, respectively, member-
ship and non-membership functions of A with the condi-
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tion 0 ≤ µA(x) + νA(x) ≤ 1 for any x ∈ X . Let IFS(X)
denote the set of all IFSs in X .

Obviously, any fuzzy set A in X may be represented as
the following IFS: A = {(x, µA(x), 1−µA(x)) : x ∈ X}.

For each A ∈ IFS(X), we call

πA(x) = 1− µA(x)− νA(x)

the intuitionistic index of x in A. It is hesitancy degree of
x to A (see, [2, 3]). Obviously, 0 ≤ πA(x) ≤ 1 for each
x ∈ X .

As Szmidt and Kacprzky’s work [16], considering the
term of hesitancy degree, an IFS A can be expressed as

A = {(µA(x), νA(x), πA(x)) : x ∈ X}.

If A is an ordinary fuzzy set, then πA(x) = 0 for each
x ∈ X . It means that third parameter πA(x) can not be ca-
sually omitted if A is a general IFS, not an ordinary fuzzy
set. Therefore, this representation of IFSs will be a point
of departure for considering new method to calculate the
distance between IFSs.

For A,B ∈ IFS(X), Atanassov [2] defined the notion
of inclusion as follows:

A ⊆ B ⇔ µA(x) ≤ µB(x) and νA(x) ≥ νB(x)
for all x ∈ X.

As above-mentioned, we can not omit the third parameter
(hesitancy degree) in the representation of IFSs and then
redefine the notion of containment as follows:

A ⊆ B ⇔ µA(x) ≤ µB(x), νA(x) ≥ νB(x)
and πA(x) ≥ πB(x) for all x ∈ X.

Measuring the similarity between IFSs is important in
pattern recognition research. Some methods have previ-
ously been advanced to caculate the degree of similarity
between IFSs [10, 11, 13, 14]. In the following, we shall
review these similarity measures. In the study of the sim-
ilarity between IFSs, Li and Cheng [11] and Mitchell [14]
introduced the following definition.

Definition 1. A function S : IFSs(X) × IFSs(X) →
[0, 1] is called similarity measure of IFSs if S satisfies the
following properties: for any A,B, C ∈ IFSs(X),

(SP1) 0 ≤ S(A,B) ≤ 1;
(SP2) S(A,B) = 1 if and only if A = B;
(SP3) S(A,B) = S(B,A);
(SP4) If A ⊆ B ⊆ C, then S(A,C) ≤ S(A,B) and

S(A,C) ≤ S(B,C).

Distance measure is another measure in fuzzy set the-
ory, and is the measure of difference between IFSs. Wang
and Xin [19] defined the axiom definition of it as follows:

Definition 2. A function d : IFSs(X) × IFSs(X) →
[0, 1] is called distance measure of IFSs if d satisfies the
following properties: for any A,B, C ∈ IFSs(X),

(DP1) 0 ≤ d(A,B) ≤ 1;
(DP2) d(A,B) = 0 if and only if A = B;
(DP3) d(A,B) = d(B,A);
(DP4) If A ⊆ B ⊆ C, then d(A,C) ≥ d(A,B) and

d(A,C) ≥ d(B,C).

Distance measure is a term that describes the difference
between IFSs, and can be considered as a dual concept of
similarity measure. Many measures of distance measures
between IFSs have been proposed and researched in recent
years.

Assume that there are two IFSs A and B in X =
{x1, x2, . . . , xn}.

Li and Cheng [11] proposed the distance dp
d between

IFSs A and B as follows:

dp
d(A,B) =

1
p
√

n
p

√√√√ n∑
i=1

|mA(i)−mb(i)|p,

where mA(i) = (µA(xi) + 1 − νA(xi))/2, mB(i) =
(µB(xi) + 1 − νB(xi))/2 and 1 ≤ p < ∞. Clearly, Sp

d

(= 1 − dp
d) is similarity measure since distance and simi-

larity measure are dual concepts. This measure is not only
easily interpreted in geometry but also easily calculated in
practical cases.

Liang and Shi [13] proposed the distance dp
e between

IFSs A and B as follows:

dp
e(A,B) =

1
p
√

n
p

√√√√ n∑
i=1

|φtAB(i)− φfAB(i)|p,

where φtAB(i) = |µA(xi)− µB(xi)|/2, φfAB(i) = |(1−
νA(xi))/2 − (1 − νB(xi))/2| and 1 ≤ p < ∞. Then
Sp

e (A,B) (= 1− dp
e(A,B)) is similarity measure between

A and B. To get more information on IFSs, Liang and Shi
[13] used the middle point mA(i) to partition the interval
[µA(xi), 1−νA(xi)] into two subintervals [µA(xi),mA(i)]
and [mA(i), 1 − νA(xi)]. Then they considered the mid-
dle points, say mA1(i) and mA2(i), of these two subin-
tervals. That is, mA1(i) = µA(xi)+mA(i)

2 , mA2(i) =
mA(i)+1−νA(xi)

2 . By the same way, mB1(i) and mB2(i)
are the middle points of the subintervals [µB(xi),mB(i)]
and [mB(i), 1−νB(xi)], respectively. Thus, they proposed
the distance between A and B as follows:

dp
s(A,B) =

1
p
√

n
p

√√√√ n∑
i=1

(φs1(i)− φs2(i))p,

where φs1(i) = |mA1(i) − mB1(i)|/2 and φs2(i) =
|mA2(i) − mB2(i)|/2. Hence, they used Sp

s (A,B) (=
1− dp

s(A,B)) to measure the degree of similarity between
A and B. In comparison of Sp

d and Sp
s , the formula of Sp

d

is simpler than Sp
s , but Sp

s can catch more information in
IFSs than Sp

d .
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Mitchell [14] adopted a statistical approach and inter-
preted IFSs as ensembles of ordered fuzzy sets to mod-
ify Li and Cheng’s similarity measure. Let ρµ(A,B) and
ρν(A,B) denote the similaritys between the low member-
ship functions µA and µB and between the high member-
ship functions 1− νA and 1− νB , respectively, as follows:

ρµ(A,B) = S(µA, µB)

= 1− 1
p
√

n
p

√√√√ n∑
i=1

|µA(xi)− µB(xi)|p,

ρν(A,B) = S(1− νA, 1− νB)

= 1− 1
p
√

n
p

√√√√ n∑
i=1

|νA(xi)− νB(xi)|p.

He then defined the modified similarity measure between
IFSs A and B with

Smod(A,B) =
1
2
(ρµ(A,B) + ρν(A,B)).

Hung and Yang [10] used the idea of Hausdorff distance
to define the distance between IFSs A and B as follows:

dH(A,B) =
1
n

n∑
i=1

max{|µA(xi)− µB(xi)|,

|νA(xi)− νB(xi)|}

and used the distance dH to generate three similarity mea-
sures:

Sl(A,B) = 1− dH(A,B),

Se(A,B) =
exp(−dH(A,B))− exp(−1)

1− exp(−1)
,

Sc(A,B) =
1− dH(A,B)
1 + dH(A,B)

.

Wang and Xin [19] proposed the distance measures be-
tween IFSs A and B as follows:

dwx1(A,B)

=
1
n

n∑
i=1

( |µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|
4

+
max{|µA(xi)− µB(xi)|, |νA(xi)− νB(xi)|}

2

)
and

dwx2(A,B) =
1

p
√

n
p

√√√√ n∑
i=1

(φµ(i)− φν(i))p,

where φµ(i) = |µA(xi) − µB(xi)|/2 and φν(i) =
|νA(xi)− νB(xi)|/2.

3. New distance measures between IFSs

In this section, based on the three dimensional repre-
sentation of IFSs, we propose new method to calculate the
distance between IFSs by adding the term of hesitancy to
Wang and Xin’s formula.

For two IFSs A and B in X = {x1, x2, . . . , xn}, de-
note

d1(A,B)

=
1
4n

n∑
i=1

(
|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|

+|πA(xi)− πB(xi)|+ 2 max{|µA(xi)− µB(xi)|,

|νA(xi)− νB(xi)|, |πA(xi)− πB(xi)|}
)
.

Then we have the following theorem.
Theorem 1. d1(A,B) is the degree of distance between

two IFSs A and B in X = {x1, x2, . . . , xn}.
Proof. It is easy to see that d1(A,B) satisfies the

properties (DP1)-(DP3) of Definition 2. We therefore only
prove that d1(A,B) satisfies the property (DP4).

Let A ⊆ B ⊆ C, A,B, C ∈ IFSs(X). Then
µA(xi) ≤ µB(xi)µC(xi), νA(xi) ≥ νB(xi) ≥ νC(xi)
and πA(xi) ≥ πB(xi) ≥ πC(xi) for any xi ∈ X . It fol-
lows that

|µA(xi)− µC(xi)| ≥ |µA(xi)− µB(xi)|,
|νA(xi)− νC(xi)| ≥ |νA(xi)− νB(xi)|,
|πA(xi)− πC(xi)| ≥ |πA(xi)− πB(xi)|.

So, we have

|µA(xi)− µC(xi)|+ |νA(xi)− νC(xi)|
+|πA(xi)− πC(xi)|+ 2 max{|µA(xi)− µC(xi)|,
|νA(xi)− νC(xi)|, |πA(xi)− πC(xi)|}

≥ |µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|
+|πA(xi)− πB(xi)|+ 2 max{|µA(xi)− µB(xi)|,
|νA(xi)− νB(xi)|, |πA(xi)− πB(xi)|}

and then we can get d1(A,C) ≥ d1(A,B). By the same
reason, we can get d1(A,C) ≥ d1(B,C). Thus the prop-
erty (DP4) is obtained.

Example 1. Let A and B be two IFSs in X = {x1, x2,
x3} given by A = {(0.3, 0.6), (0.5, 0.4), (0.7, 0.1)} and
B = {(0.4, 0.6), (0.6, 0.3), (0.5, 0.2)}. Then, by the defi-
nition of d1, the distance between A and B is

d1(A,B)

=
1
12

3∑
i=1

(
|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|

+|πA(xi)− πB(xi)|+ 2 max{|µA(xi)− µB(xi)|,

|νA(xi)− νB(xi)|, |πA(xi)− πB(xi)|}
)

= 0.112
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Usually, the weight of the element xi ∈ X should be
taken into account, so we present the following weighted
distance measures between IFSs.

Assume the weight of the element xi ∈ X = {x1,
x2, . . . , xn} is ωi (i = 1, 2, . . . , n), where 0 ≤ ωi ≤ 1.
Denote

dω(A,B)

=
1
4

n∑
i=1

ωi

(
|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|

+|πA(xi)− πB(xi)|+ 2 max{|µA(xi)− µB(xi)|,

|νA(xi)− νB(xi)|, |πA(xi)− πB(xi)|}
)/ n∑

i=1

ωi.

Then we have the following theorem.

Theorem 2. dω(A,B) is the degree of distance be-
tween two IFSs A and B in X = {x1, x2, . . . , xn}.

Proof. The proof is similar to that of Theorem 1.

Remark 1. Obviously, if wi = 1/n (i = 1, 2, . . . , n),
dω(A,B) becomes d1(A,B). So, d1(A,B) is a special
case of dω(A,B).

Now, we propose another distance measure between
IFSs.

For IFSs A and B in X = {x1, x2, . . . , xn}. Let
φµAB

(i) = |µA(xi) − µB(xi)|/2, φνAB
(i) = |νA(xi) −

νB(xi)|/2, φπAB
(i) = |πA(xi) − πB(xi)|/2 and xi ∈ X .

Denote

dp
2(A,B) =

1
p
√

n
p

√√√√ n∑
i=1

(φµAB
(i) + φνAB

(i) + φπAB
(i))p,

where 1 ≤ p < ∞.

Theorem 3. dp
2(A,B) is the degree of distance be-

tween two IFSs A and B in X = {x1, x2, . . . , xn}.
Proof. The proof is similar to that of Theorem 1.

Example 2. Let A and B be two IFSs defined in Ex-
ample 1. Then by the definition of d1

2, the distance between
A and B is

d1
2(A,B) =

1
6

3∑
i=1

[|µA(xi)− µB(xi)|+ |νA(xi)

−νB(xi)|+ |πA(xi)− πB(xi)|]
= 0.100.

Remark 2. By the same way, we can get its weighted
distance measure as the weighted distance measure defined
above.

It is well known that similarity measures can be gener-
ated from distance measures. Therefore, we may use the
proposed distance measure to define a similarity measure.

Let f be a monotone decreasing function and d be the pro-
posed distance measure. Since 0 ≤ d(A,B) ≤ 1,

f(1) ≤ f(d(A,B)) ≤ f(0).

This implies

0 ≤ f(d(A,B))− f(1)
f(0)− f(1)

≤ 1.

Thus, we may define the similarity measure between IFSs
A and B as follows:

S(A,B) =
f(d(A,B))− f(1)

f(0)− f(1)
.

Obviously, S(A,B) satisfies properties (SP1)-(SP4).
Next, we follow the way of Hung and Yang [10] to

choose

f(x) = 1− x and
1

1 + x
.

Then the corresponding similarity measures between A and
B are given by

S1(A,B) = 1− d1(A,B), (1)
S2(A,B) = 1− dp

2(A,B), (2)

S3(A,B) =
1− d1(A,B)
1 + d1(A,B)

, (3)

S4(A,B) =
1− dp

2(A,B)
1 + dp

2(A,B)
. (4)

4. Numerical examples

To illustrate the proposed similarity measures are rea-
sonable, we borrow several examples from Liang and Shi
[13].

Example 3. [13] Assume that there are three patterns
denoted with IFSs in X = {x1, x2, x3}. The three patterns
are denoted as follows:

A1 = {(x1, 0.3, 0.3), (x2, 0.2, 0.2), (x3, 0.1, 0.1)};
A2 = {(x1, 0.2, 0.2), (x2, 0.2, 0.2), (x3, 0.2, 0.2)};
A3 = {(x1, 0.4, 0.4), (x2, 0.4, 0.4), (x3, 0.4, 0.4)}.

Assume that a sample B = {(x1, 0.3, 0.3), (x2, 0.2, 0.2),
(x3, 0.1, 0.1)} is given. To interpret the notions of three
patterns, we borrow the idea of Wang and Xin [19]. Given
three minerals of mineral fields, each is featured by the
content of three minerals and contains one kind of typical
hybrid minerals. The three kinds of typical hybrid miner-
als are represented by IFSs A1,A2, A3 in X , respectively.
Given another kind of hybrid mineral B, to which field
does this kind of mineral B most probably belong to ? By
(1)-(4), we have

S1(A1, B) = 1.000, S1(A2, B) = 0.877, S1(A3, B) = 0.600,

S
2
2(A1, B) = 1.000, S

2
2(A2, B) = 0.847, S

2
2(A3, B) = 0.568,

S3(A1, B) = 1, 000, S3(A2, B) = 0.765, S3(A3, B) = 0.429,

S
2
4(A1, B) = 1, 000, S

2
4(A2, B) = 0.719, S

2
4(A3, B) = 0.397.
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From this data, it is evident that A1 = B. That, is the
sample B belong to the pattern A1.

Example 2. [13] Assume that there are three patterns
denoted with IFSs in X = {x1, x2, x3}. The three patterns
are denoted as follows:

A1 = {(x1, 0.3, 0.3), (x2, 0.2, 0.2), (x3, 0.1, 0.1)};
A2 = {(x1, 0.2, 0.2), (x2, 0.2, 0.2), (x3, 0.2, 0.2)}.

Assume that a sample B = {(x1, 0.3, 0.3), (x2, 0.2, 0.2),
(x3, 0.1, 0.1)} is given. By , we have

S1(A1, B) = 0.833, S1(A2, B) = 0.733,

S2
2(A1, B) = 0.827, S2

2(A2, B) = 0.727,

S3(A1, B) = 0.714, S3(A2, B) = 0.579,

S2
4(A1, B) = 0.705, S2

4(A2, B) = 0.559.

Based on the above results, it is seen that the sample B
belongs to the pattern A1 according to the principle of the
maximum degree of similarity between IFSs. This classi-
fication result is different from Liang and Shi [13], where
their measure Sp

s cannot classify this sample because of
Sp

s (A1, B) = Sp
s (A2, B).
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