초록
자기 자신의 형태를 변형하거나 물리적인 결합으로 재구성하여 새로운 환경에 적응하는 모듈형 자가 결합 로봇은 많은 연구가 필요한 분야이다. 본 논문에서는 물리적으로 결합 가능한 모듈형 로봇을 위한 영상기반의 자가 결합 제어기를 제안한다. 먼저 실시간 영상처리가 가능한 모듈형 로봇 플랫폼을 설계하고, 컬러기반 물체 인식 방법을 구현하였다. 모듈형 로봇은 자가 결합을 위해 결합될 로봇 근처의 부목표점까지 장애물들을 회피하면서 주행해 가야 한다. 본 논문에서는 부 목표점의 추적을 위하여 영상처리를 통해 얻은 거리와 방향각 정보들을 사용한 퍼지 주행 제어기와 장애물 회피를 위한 퍼지 제어기를 제안하고, 제안된 퍼지 제어기들과 로봇의 절대 거리 및 방향각 정보를 사용하여 모듈형 로봇을 위한 자가 결합제어기를 구현하였다. 실제 제작된 두 대의 모듈형 로봇을 사용하여 다양한 환경에서 로봇간 거리와 방향각이 다른 상황에서 실험을 수행하여 제안된 자가 결합 제어 방법의 성능을 검증하였다.
Modular reconfigurable robots with physical docking capability easily adapt to a new environment and many studies are necessary for the modular robots. In this paper, we propose a vision-based fuzzy autonomous docking controller for the modular docking robots. A modular docking robot platform which performs real-time image processing is designed and color-based object recognition method is implemented on the embedded system. The docking robot can navigate to a subgoal near a target robot while avoiding obstacles. Both a fuzzy obstacle avoidance controller and a fuzzy navigation controller for subgoal tracking are designed. We propose an autonomous docking controller using the fuzzy obstacle avoidance and navigation controllers, absolute distance information and direction informations of robots from PSD sensors and a compass sensor. We verify the proposed docking control method by docking experiments of the developed modular robots in the various environments with different distances and directions between robots.