DOI QR코드

DOI QR Code

Bilateral Diagonal 2DLDA Method for Human Face Recognition

얼굴 인식을 위한 쌍대각 2DLDA 방법

  • 김영길 (충북대학교 전자정보대학 영상통신연구실) ;
  • 송영준 (충북대학교 충북BIT연구중심대학육성사업단) ;
  • 김동우 ((주) 이씨엠) ;
  • 안재형 (충북대학교 전자정보대학 영상통신연구실)
  • Received : 2009.04.21
  • Accepted : 2009.10.10
  • Published : 2009.10.25

Abstract

In this paper, a method called bilateral diagonal 2DLDA is proposed for face recognition. Two methods called Dia2DPCA and Dia2DLDA were suggested to reserve the correlations between the variations in the rows and columns of diagonal images. However, these methods work in the row direction of these images. A row-directional projection matrix can be obtained by calculating the between-class and within-class covariance matrices making an allowance for the column variation of alternative diagonal face images. In addition, column-directional projection matrix can be obtained by calculating the between-class and within-class covariance matrices making an allowance for the row variation in diagonal images. A bilateral projection scheme was applied using left and right multiplying projection matrices. As a result, the dimension of the feature matrix and computation time can be reduced. Experiments carried out on an ORL face database show that the proposed method with three different distance measures, namely, Frobenius, Yang and AMD, is more accurate than some methods, such as 2DPCA, B2DPCA, 2DLDA, etc.

본 논문에서는 얼굴을 인식하기 위한 쌍대각 2차원 LDA를 제안하였다. 기존의 Dia2DPCA와 Dia2DLDA가 대각 방향 영상들의 행 변화량과 열 변화량 사이의 상관을 제한하기 위하여 제안되어지고 있다. 그러나 이러한 방법들은 영상들의 행방향으로 동작한다. 제한 방법에 있어서 행방향의 투영 행렬은 기존 방법과 전혀 다르게 대각 방향 얼굴 영상들의 열 변화량을 고려한 클래스 간의 공분산 행렬과 클래스 내의 공분산 행렬을 이용함으로써 얻어진다. 그리고 열방향의 투영 행렬은 대각방향 얼굴 영상들의 행 변화량을 고려한 클래스 간의 공분산 행렬과 클래스 내의 공분산 행렬을 이용함으로써 얻어진다. 좌우 양측의 투영 방법은 투영 행렬들을 좌우로 곱함으로써 적용된다. 그 결과로 특징 행렬의 차원과 계산 시간이 감소된다. ORL 얼굴 데이터베이스에서 수행된 실험들은 Frobenius, Yang, AMD와 같은 3가지 거리 척도를 사용하여 2DPCA, B2DPCA, 2DLDA 등과 같은 다른 얼굴 인식 방법들보다 제안된 방법의 인식률이 높음을 보여준다.

Keywords

References

  1. L. Sirovich and M. Kirby, 'Low-dimensional procedure for the characterization of human faces,' J. Opt. Soc. Amer., Vol. 4, pp. 519-524, 1987 https://doi.org/10.1364/JOSAA.4.000519
  2. M. Turk and A. Pentland, 'Eigenfaces for Recognition,' Journal of Cognitive Neuroscience, Vol. 3, No. 1, pp. 72-86, 1991
  3. P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, 'Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection,' IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 711-720, 1997 https://doi.org/10.1109/34.598228
  4. M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, 'Face Recognition by Independent Component Analysis,' IEEE Trans. Neural Networks, Vol. 13, No. 6, pp. 1450-1464, 2002 https://doi.org/10.1109/TNN.2002.804287
  5. M. H. Yang, 'Kernel Eigenfaces vs. Kernel Fisherfaces: Face Recognition Using Kernel Methods,' IEEE Conf. Automatic Face and Gesture Recognition, pp. 215-220, 2002
  6. D. D. Lee and H. S. Seung, 'Learning the parts of objects by non-negative matrix factorization,' Nature, Vol. 401, pp. 788-791, 1999
  7. D. Guillamet and J. Vitria, 'Classifying Faces with Non-negative Matrix Factorization,' Catalonian Conf. Artificial Intelligence, pp. 336-344, 2002
  8. J. Yang and J. Y. Yang, 'From image vector to matrix: a straightforward image projection technique. IMPCA vs. PCA,' Pattern Recognition, Vol. 35, No. 9, pp. 1997-1999, 2002 https://doi.org/10.1016/S0031-3203(02)00040-7
  9. J. Yang, D. Zhang, A. F. Frangi, and J. Y. Yang, 'Two-Dimensional PCA : A New Approach to Appearance-Based Face Representation and Recognition,' IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 26, No. 1, pp. 131-137, 2004 https://doi.org/10.1109/TPAMI.2004.1261097
  10. D. Zhang and Z. H. Zhou, '(2D)2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition,' Neurocomputing, Vol. 69, No. 1-3, pp. 224-231, 2005 https://doi.org/10.1016/j.neucom.2005.06.004
  11. D. Zhang, Z. H. Zhou, and S. Chen, 'Diagonal principal component analysis for face recognition,' Pattern Recognition, Vol. 39, No. 1, pp. 140-142, 2006 https://doi.org/10.1016/j.patcog.2005.08.002
  12. M. Li and B. Yuan, '2D-LDA: A statistical linear discriminant analysis for image matrix,' Pattern Recognition Letters, Vol. 26, No. 5, pp. 527-532, 2005 https://doi.org/10.1016/j.patrec.2004.09.007
  13. S. Noushath, G. H. Kumar, and P. Shivakumara, 'Diagonal Fisher linear discriminant analysis for efficient face recognition,' Neurocomputing, Vol. 69, No. 13-15, pp. 1711-1716, 2006 https://doi.org/10.1016/j.neucom.2006.01.012
  14. F. E. Alsaqre, R. Qiuqi, Y. Baozong, and T. Zhenhui, 'Face Recognition Using Diagonal 2D Linear Discriminant Analysis,' International Conf. Signal Processing, Vol. 3, pp. 1729-1732, 2006
  15. G. H. Golub and C. F. V. Loan, Matrix Computation 3rd Edition, The Johns Hopkins University Press, 1996
  16. W. Zuo, D. Zhang, and K. Wang, 'Bidirectional PCA with assembled matrix distance metric for image recognition,' IEEE Trans. System, Man, and Cybernetics-Part B : Cybernetics, Vol. 36, No. 4, pp. 863-872, 2006 https://doi.org/10.1109/TSMCB.2006.872274