DOI QR코드

DOI QR Code

Dissolution Monitoring of Geo-Soluble Mixtures

지반 소실 혼합재의 용해과정 모니터링

  • Truong, Q. Hung (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Byun, Yong-Hoon (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Eom, Yong-Hun (School of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Sim, Young-Jong (Land, Housing & Urban Research Institute, Korea Land & Housing Corporation) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 쭝꽝훙 (고려대학교 건축사회환경공학부) ;
  • 변용훈 (고려대학교 건축사회환경공학부) ;
  • 엄용훈 (고려대학교 건축사회환경공학부) ;
  • 심영종 (한국토지주택공사 토지주택연구원) ;
  • 이종섭 (고려대학교 건축사회환경공학부)
  • Received : 2009.08.17
  • Accepted : 2009.10.22
  • Published : 2009.10.31

Abstract

Dissolution of some of geo-materials may yield the loss of the soil strength and the settlement of earth structures. The goal of this study is to monitor the several physical behaviors of soluble mixtures during dissolution. Sand-salt mixtures are used to monitor the meso to macro response including the settlements and shear waves. The mixtures of photoelastic and ice disks are used to monitor micro to meso behavior of soluble mixture including the void ratio, force chain, coordination number and horizontal force changes. In the sand-salt mixtures, shear waves are measured by using bender elements in conventional oedometer cells. In the photoelastic disk - ice disk mixtures, micro to meso response are measured by digital images and load cells. The shear wave velocity decreases at the initial stage of the dissolution, and then increases and approaches to asymptotic value. The larger dissoluble particle and the more random packing produces the severe horizontal fore change. After dissolution, the void increases and the coordination number decreases. This study demonstrates that the particle level behavior such as the changes of the force chain, void ratio, and coordination number affects the global behavior such as the change of the shear wave velocity and horizontal force of the system.

지반에 포함된 입자의 용해작용은 흙의 강도를 저하시키고, 지하구조물의 침하를 발생시킨다. 본 논문에서는 입자용해시 혼합재의 물리적 특성 변화를 조사하고자 하였다. 침하량 측정과 전단파 측정과 같은 거시적 반응을 평가하기 위해, 소금과 모래로 구성된 혼합재를 사용하였다. 또한, 광탄성(photoelastic) 디스크와 얼음 디스크 혼합재를 이용하여 힘 연결고리(force chain), 간극, 접촉점수(coordination number), 그리고 수평력 변화와 같은 미시적 거동을 분석하였다. 소금-모래 혼합재에서 전단파는 압밀셀에 설치된 다단의 벤더 엘리먼트로 측정되었고, 광탄성 디스크-얼음 디스크 혼합재의 역학적 거동은 로드셀과 디지털 이미지를 이용하여 분석되었다. 실험결과, 소금의 용해시 전단파 속도는 초기에는 감소한 후에 증가한 후 일정한 값으로 수렴하였다. 용해가능 입자의 크기가 커질수록 그리고 입자패킹이 불규칙해질수록 입자용해시 수평력의 변화가 더 커지는 것을 알 수 있었다. 용해 후, 간극비는 증가했고, 접촉점수는 감소하였다. 본 연구에서는 힘 연결고리, 간극비, 접촉점수와 같은 입자의 거동변화가 전단파 속도와 전체시스템의 수평력 변화 같은 전체적인 거동에 영향을 주는 것으로 나타났다.

Keywords

References

  1. Allersma, H. G. B. (1982), Determination of the stress distribution in assemblies of photoelastic particles, Exp. Mech., 9, 336-341
  2. Azam, S. (2000), Collapse and compressibility behaviour of arid calcareous soil formations, Bull. Eng. Geol. Env., 59(3), 211-217, doi: 10.1007/s100640000060
  3. Bell, F. G. (2007), Engineering Geology, 2nd ed., 592 pp., Elsevier, Great Britain
  4. Blyth, F. G. H. and de Freitas, M. H. (1984), A Geology for Engineers, 336 pp., Butterworth-Heinemann, Oxford
  5. Budynas, R. (1998), Advanced Strength and Applied Stress Analysis, 2nd ed., 960 pp., McGraw-Hill Science/Engineering/Math, New York
  6. Craft, D. (2005), Seepage chemistry manual, report, 76pp., Bureau of Reclamation, U.S. Department of the Interior - Bureau of Reclamation, Denver, Colorado
  7. Craft, D., Cain, C. and Sullivan, C. (2006), Seepage geochemistry and mineral dissolution at Clark Canyon Dam, Pick-Sloan Missouri Basin Project, East Bench Unit, Montana, report, 48 pp., U.S. Department of the Interior - Bureau of Reclamation, Denver, Colorado.
  8. Drescher, A. and de Josselin de Jong, G. (1972), Photoelastic verification of a mechanical model for the flow of a granular material, J. Mech. Phys. Solid., 20, 337-351, doi:10.1016/0022- 5096(72)90029-4
  9. Fam, M. A., Cascante, G., and Dusseault, M. B. (2002), Large and small strain properties of sands subjected to local void increase, J. Geotech. Geoenviron., 128(12), 1018-1025, doi:10.1061/(ASCE)1090- 0241(2002)128:12(1018)
  10. Geng, J., Howell, D., Longhi, E., Behringer, R. P., Reydellet, G., Vanel, L., Clément, E., and Luding, S. (2001), Footprints in sand: the response of a granular material to local perturbations, Phys. Rev. Lett., 87(3), 035506-1~035506-4, doi:10.1103/PhysRevLett.87.035506
  11. Hillel, D. (Eds.) (2004), Encyclopedia of Soils in the Environment, Vol. 1, Academic Press, New York
  12. Hardin, B. O., and Drnevich, V. P. (1972), Shear modulus and damping in soils: measurements and parameter effects, Journal of the Soil Mechanics and Foundation Division, 98(6), 603–624
  13. Jessop, H. T. and Harris, F. C. (1949), Photoelasticity: Principles and Methods, Cleaver-Hume Press Ltd., New York
  14. Lee, J. S. and Santamarina, J. C. (2005), Bender elements: performance and signal interpretation, J. Geotech. Geoenviron., 131(9), 1063-1070, doi:10.1061/(ASCE)1090-0241(2005)131:9(1063)
  15. Majmudar, T. S. and Behringer, R. P. (2005), Contact force measurements and stress-induced anisotropy in granular materials, Nature, 435, 1079-1082, doi:10.1038/nature03805
  16. Muthuswamy, M., Peters, J., and Tordesillas, A. (2006), Uncovering the secrets to relieving stress: discrete element analysis of force chains in particulate media, Anziam J., 47, C355-C372 https://doi.org/10.21914/anziamj.v47i0.1049
  17. Ramesh, K. (2008), Photoelasticity, in Springer Handbook of Experimental Solid Mechanics edited by W.N. Sharpe, pp. 701-742, Springer, New York
  18. Peters, J. E., Muthuswamy, M., Wibowo, J., and Tordesillas, A. 2005. Characterization of force chains in granular material. Physical Review Letters: 72: 1539-3755
  19. Rastogi, P. K. (Eds.) (1999), Photomechanics, Springer - Verlag, Berlin. 471 pp
  20. Santamarina, J. C., Klein, K. A., and Fam, M. A. (2001), Soils and Waves – Particulate Materials Behavior, Characterization and Process Monitoring, 508 pp., Wiley, New York
  21. Truong, Q. H., Eom, Y. H., and Lee, J. S. (2009), Stiffness characteristics of soluble mixtures, Geotechnique (accepted)
  22. Wan, R., Guo, P., and Al-Mamun, M. (2005), Behaviour of granular materials in relation to their fabric dependencies, Soils Found., 45(2), 77-86 https://doi.org/10.3208/sandf.45.2_77