DOI QR코드

DOI QR Code

국내 확률론적 지진계수 생성

Development of Probabilistic Seismic Coefficients of Korea

  • 곽동엽 (한양대학교 건설환경공학과) ;
  • 정창균 (한양대학교 건설환경공학과) ;
  • 박두희 (한양대학교 건설공학과) ;
  • 이홍성 (현대건설 기술연구소)
  • 투고 : 2009.07.15
  • 심사 : 2009.10.20
  • 발행 : 2009.10.31

초록

지진계수는 지진재해도 함께 지표면에서의 설계응답스펙트럼을 생성하는데 사용된다. 지진계수는 일반적으로 결정론적인 방법으로 도출되는 반면 지진재해도는 확률론적으로 계산되어 이들은 혼용될 수 없으나, 국내외 내진설계기준에서는 이들을 명확한 근거없이 혼용하고 있다. 이와 같은 근본적인 문제점을 해결하기 위해서 본 연구에서는 기존의 지진재해분석과 암반노두에서는 동일한 결과를 재현하되 지반응답해석 기능을 추가하여 토층에서의 부지증폭현상을 고려한 확률론적인 지진계수를 도출할 수 있는 신(新) 지진재해분석 기법을 적용하였다. 신(新) 지진재해분석 기법의 또다른 장점은 지반의 불확실성과 임의성을 합리적으로 고려할 수 있다는 점이다. 본 연구에서 계산된 확률론적 지진계수는 내진설계기준(II)과 국내에서 제안된 지진계수 세트들과 비교하여 차이점을 분석하였다. 비교 결과, 내진설계기준(II)과는 현격한 차이가 있는 반면, 또다른 지진계수와는 일부 지반분류에서만 차이가 나는 것으로 나타났다.

The seismic site coefficients are often used with the seismic hazard maps to develop the design response spectrum at the surface. The site coefficients are most commonly developed deterministically, while the seismic hazarde maps are derived probabilistically. There is, hence, an inherent incompatibility between the two approaches. However, they are used together in the seismic design codes without a clear rational basis. To resolve the fundamental imcompatibility between the site coefficients and hazard maps, this study uses a novel probabilistic seismic hazard analysis (PSHA) technique that simulates the results of a standard PSHA at a rock outcrop, but integrates the site response analysis function to capture the site amplification effects within the PSHA platform. Another important advantage of the method is its ability to model the uncertainty, variability, and randomness of the soil properties. The new PSHA was used to develop fully probabilistic site coefficients for site classes of the seismic design code and another sets of site classes proposed in Korea. Comparisons highlight the pronounced discrepancy between the site coefficients of the seismic design code and the proposed coefficients, while another set of site coefficients show differences only at selected site classes.

키워드

참고문헌

  1. 건설교통부 (1997), 내진설계기준연구(II), pp.493
  2. 곽동엽, 정창균, 박두희 (2009), "한반도 확률론적인 지진재해분석과 Deaggregation", 한국지진공학회 논문집
  3. 김동수, 추연욱 (2001), "공진주시험을 이용한 국내 비점성토 지반의 동적변형특성", 한국지반공학회논문집, Vol.17, No.5, pp.115-128
  4. Boore, D.M. (2002), SMSIM Fortran programs for simulating ground motions from earthquakes: Version 2.16. A revision of OFR 96-80-A, US Geological Survey, Menlo Park
  5. Borcherdt, R.D. (1994), 'Estimates of site-dependent response spectra for design (methodology and justification)', Earthquake Spectra, Vol. 10, pp.617-653 https://doi.org/10.1193/1.1585791
  6. Cornell, C.A. (1968), "Engineering seismic risk analysis", Bulletin of Seismological Society of America, Vol.58, pp.1583-1606
  7. Dobry, R., Martin, G., Parra, E. and Bhattacharyya, A. (1994), "Development of site-dependent ratios of elastic response spectra (RRS) and site categories for building seismic codes', pp.18-20
  8. Dobry, R., Martin, G., Parra, E. and Bhattacharyya, A. (1999), 'Development of Site Dependent Ratio of Elastic Response Spectra (RRS)', pp.
  9. Dobry, R. and Vucetic, M. (1987), "Dynamic properties and seismic response of soft clay deposits", International Symposium on Geotechnical Engineering of Soft Soils, Mexico City, 2, pp.51-87
  10. FEMA (1997), "NEHRP recommended provisions for seismic regulations for new buildings and other structures, Part I", p.337
  11. Gutenberg, B. and Richter, C. (1944), "Frequency of earthquakes in California", Bull. Seism. Soc. Am, Vol.34, No.4, pp.1985-1988
  12. IBC (2000), International Building Council, Whittier, CA
  13. Kim, D.-S., Lee, S.-H. and Yoon, J.-K. (2008), "Development of Site Classification System and Modification of Site Coefficients in Korea Based on Mean Shear Wave Velocity of Soil and Depth to Bedrock", Journal of Korean Society of Civil Engineering, Vol.28, No.1C, pp.63-74
  14. Kim, I.T. and Yoon, J.K. (2006), "Development of new site classification system for the regions of shallow bedrock in Korea", Journal of Earthquake Engineering, Vol.10, No.3, pp.331-358 https://doi.org/10.1142/S1363246906002669
  15. Kramer, S.L. (1996), Geotechnical earthquake engineering, Prentice Hall, Upper Saddle River, N.J., pp.xviii, 653
  16. Noh, M. and Lee, K. (1994), "Estimation of Peak Ground Motions in the southeastern Part of the Korean Peninsula (I): Estimation of Spectral Parameters", Jour. Geol. Soc. Korea, Vol.30, pp.297-306
  17. Park, D. and Hashash, Y.M.A. (2005), "Evaluation of seismic site factors in the Mississippi Embayment. II. Probabilistic seismic hazard analysis with nonlinear site effects', Soil Dynamics and Earthquake Engineering, Vol.25, No.2, pp.145-156 https://doi.org/10.1016/j.soildyn.2004.10.003
  18. Schnabel, P.B. (1973), Effects of local geology and distance from source on earthquake ground motions, University of California, Berkeley
  19. Seed, H.B. and Idriss, I.M. (1970), Soil moduli and damping factors for dynamic response analyses, College of Engineering University of California Berkeley., Berkeley, p.41
  20. Seed, H.B., Wong, R.T., Idriss, I.M. and Tokmatsu, K. (1986), "Moduli and damping factors for dynamic analyses of cohesionless soils", Journal of Geotechnical Engineering, Vol.112, No.11, pp. 1016-1032 https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016)
  21. Sun, C.-G., Kim, D.-S. and Chung, C.-K. (2005), "Geologic site conditions and site coefficients for estimating earthquake ground motions in the inland areas of Korea", Engineering Geology, Vol.81, No.4, pp.446-469 https://doi.org/10.1016/j.enggeo.2005.08.002
  22. Sun, J.I., Golesorkhi, R. and Seed, H.B. (1988), Dynamic moduli and damping rations for cohesive soils, Report No. UCB/EERC-88/15, Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, California
  23. Wen, Y.K. and Wu, C.L. (2001), "Uniform hazard ground motions for Mid-America Cities", Earthquake Spectra, Vol.17, No.2, pp. 359-384 https://doi.org/10.1193/1.1586179