References
- Agarwal, S., Graepel, T., Herbrich, R., Harpeled, S. and Roth, D. (2005). Generalization bounds for the area under the ROC curve, Journal of Machine Learning Research, 6, 393–425
- Bach, F., Heckerman, D. and Horvitz, E. (2006). Considering cost asymmetry in learning classifiers, Journal of Machine Learning Research, 7, 1713–1741
- Bartlett, P. and Tewari, A. (2007). Sparseness vs estimating conditional probabilities: Some asymptotic results, Journal of Machine Learning Research, 8, 775–790
- Brefeld, U. and Scheffer, T. (2005). Auc maximizing support vector learning, In Proceedings of the ICML. 2005 Workshop on ROC Analysis in Machine Learning
-
Cl
$\acute{e}$ mencon, S., Lugosi, G. and Vayatis, N. (2006). From ranking to classification: A statistical view, From Data and Information Analysis to Knowledge Engineering, 214–221 -
Cl
$\acute{e}$ mencon, S., Lugosi, G. and Vayatis, N. (2008). Ranking and empirical minimization of Ustatistics, The Annals of Statistics, 36, 844–874 - Cortes, C. and Mohri, M. (2004). Auc optimization vs. error rate minimization, In Flach, F. et al. (Eds.), In Advances in Neural Information Processing Systems, 16, MIT Press, Cambridge
- Cortes, C. and Vapnik, V. (1995). Support-vector networks, Machine Learning, 20, 273–297 https://doi.org/10.1007/BF00994018
- Freund, Y., Iyer, R., Schapire, R. E. and Singer, Y. (2003). An effcient boosting algorithm for combining preferences. Journal of Machine Learning Research, 4, 933–969
- Friedman, J. (2008). Fast sparse regression and classification, Technical Report, Stanford University
- Joachims, T. (2002). Optimizing search engines using clickthrough data, Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD) https://doi.org/10.1145/775047.775067
- Kim, J. (2004). ROC and cost graphs for general cost matrix where correct classifications incur nonzero costs, Communications of the Korean Statistical Society, 11, 21–30
- Kim, Y., Kim, K. and Song, S. (2005). Comparison of boosting and SVM, Journal of Korean Data & Information Science Society, 16, 999–1012
- Liu, Y. and Zhang, H. H. (2009). The large margin unified machines: A bridge between hard and soft classification. The 1st Institute of Mathematical Statistics Asia Pacific Rim Meeting & 2009 Conference of the Korean Statistical Society
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B, 58, 267–288