Abstract
This study was initiated to improve the cooling water quality by chemical coagulation and sedimentation in steel mills. Due to the inefficient flocculation in the settling tanks of blast furnace cooling water systems, the solid particles in the cooling water overflow accumulate and clog the cooling system. To protect the cooling water system from such fouling, proper flocculants must be continuously used. Laboratory tests were performed for the indirect cooling water system of a plate mill. The batch test in the gas scrubbing cooling water system of a blast furnace showed that the proposed coagulant was more effective for the improvement of coagulation and sedimentation than the existing one. During the tests, cationic flocculants were more effective than use of only an anionic flocculant. The suggested combination of anionic and cationic flocculants can probably improve the turbidity removal efficiency of the cooling water. Proper control of the overflow rate by the designed residence time would help turbidity removal efficiency in the settling tank. In addition, the settling can be enhanced by adopting rapid and slow mixing alternatively. Scale problems in blast furnace cooling water system were reduced to some extent by efficient settling.