Identification of the Food Sources-Metabolism of the Pacific Oyster Crassostrea gigas using Carbon and Nitrogen Stable Isotopic Ratios

  • Yang, Jin-Yong (Department of Environmental Marine Sciences, Hanyang University) ;
  • Shin, Kyung-Hoon (Department of Environmental Marine Sciences, Hanyang University)
  • Received : 2009.06.10
  • Accepted : 2009.09.05
  • Published : 2009.08.31

Abstract

In order to understand food sources-metabolism for the pacific oyster (Crassostrea gigas), the stable isotope ratios of carbon (${\delta}^{13}C$) and nitrogen (${\delta}^{15}N$) of its gut, gill, and muscle as well as potential food sources (particulate organic matter, sedimentary organic matter, benthic microalgae, seagrass detritus) were determined in Dongdae Bay. Average ${\delta}^{13}C$ and ${\delta}^{15}N$ values reflect that oysters primarily fed on sedimentary organic matter as opposed to suspended organic matter during summer and winter seasons. However, the relatively enriched $^{15}N$ values of particulate organic matter (>$250{\mu}m$) and sedimentary organic matter in the summer may be due to the photosynthetic incorporation of $^{15}N$-enriched nitrogen (DIN) or the spawning events of bivalves. Specific oyster tissues (gut, gill, and muscle) revealed different metabolic pathways, which were determined through analysis of ${\delta}^{13}C$ and ${\delta}^{15}N$ in each organ. The present results suggest the determination of carbon and nitrogen stable isotopes to be a useful approach in ecological research related to the food sources- metabolism of Crassostrea gigas.

Keywords

References

  1. Beesley PL, GLB Ross and A Wells. 1998. Mollusca: The Southern Synthesis. Fauna of Australia. CSIRO Publishing, Melbourne
  2. Boesch DF and R Rosenberg. 1981. Responses to stress in marine benthic communities. pp.179-200. In Stress effect of natural ecosystems. (Barret GW and R Rosenberg eds.). John Wiley and sons. NY
  3. Breese WP and RE Malouf. 1975. Hatchery manual for the Pacific oyster. Oreg, State Univ. Sea Grant Publ, ORE54-4-75-002
  4. Carabel S, E Godinez-Dominguez, P Verisimo, L Fernandez and J Freire. 2006. An assessment of sample processing methods for stable isotope analyses of marine food webs. J. Exp. Mar. Biol. Ecol. 336:254-261 https://doi.org/10.1016/j.jembe.2006.06.001
  5. Clark KR and RM Warwick. 1994. Change in marine communities: an approach to statistical analysis and interpretation. Plymouth marine laboratory, London
  6. Couch CA. 1989. Carbon and nitrogen stable isotopes of meiobenthos and their food resources. Estuar. Coast. Shelf. Sci. 28:433-441 https://doi.org/10.1016/0272-7714(89)90090-5
  7. Danovaro R. 1996. Detritus-Bacteria-Meiofauna interations in a seagrass bed (Posidonia oceanic) of the NW Mediterranean. Mar. Biol. 127:1-13 https://doi.org/10.1007/BF00993638
  8. DeNiro MJ and S Epstein. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45:341-351 https://doi.org/10.1016/0016-7037(81)90244-1
  9. Ehleringer JR. 1991. $^13$C/$^12$C fractionation and its utility in terrestrial plant studies. pp.187-200. In (Coleman DC and B Fry eds.). Carbon Isotope Techniques. Academic Press. San Diego
  10. Fichez, R, P Dennis, MF Fontaine and TD Jickells. 1993. Isotopic and biochemical composition of particulate organic matter in a shallow water estuary (Great Ouse, North Sea, England). Mar. Chem. 43:263-276 https://doi.org/10.1016/0304-4203(93)90231-C
  11. Fielding PJ, KStJ Damstra and GM Branch. 1988. Benthic diatom biomass, production and sediment chlorophyll in Langebaan Lagoon, South Africa. Estuar. Coast. Shelf. Sci. 27:413-416 https://doi.org/10.1016/0272-7714(88)90097-2
  12. Fry B and EB Sherr. 1984. $\delta$$^13$C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27:13-47
  13. Galois R, P Richard and B Fricourt. 1996. Seasonal variations in suspended particulate matter in the Marennes-Ole'ron bay, France, using lipids as biomarkers. Estuar. Coast. Shelf. Sci. 43:335-357 https://doi.org/10.1006/ecss.1996.0074
  14. Gannes LZ, DM O'Brien and C Mart$\acute{i}$nez del Rio. 1997. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78:1271-1276 https://doi.org/10.1890/0012-9658(1997)078[1271:SIIAEA]2.0.CO;2
  15. Gaston TF. 2004. Spatial variation in $^13$C and $^15$N of liver, muscle and bone in a rocky reef planktivorous fish: the relative contribution of sewage. J. Exp. Mar. Biol. Ecol. 304:17-33 https://doi.org/10.1016/j.jembe.2003.11.022
  16. Hansson S, JE Hobbie, R Elmgren, U Larsson, B Fry and S Johansson. 1997. The stable nitrogen isotope ratio as a marker of food-web interactions and fish migration. Ecology 78:2249-2257 https://doi.org/10.1890/0012-9658(1997)078[2249:TSNIRA]2.0.CO;2
  17. Heral M, D Razet, JM Deslous-Paoli, JP Berthome and J Garnier. 1983. Caracteristiques saisonnieres de l'hydrobiologie du complexe estuarien de Marennes-Ole'ron (France). Revue des Travaux de l'Institut des P$\hat{e}$ches Maritimes 46:97-119
  18. Hobson KA and HE Welch. 1992. Determination of trophic relationships within a high Arctic marine food web using $\delta$$^13$C, and $\delta$$^15$N analysis. Mar. Ecol. Prog. Ser. 84:9-18 https://doi.org/10.3354/meps084009
  19. Hobson KA, RT Alisauskas and RG Clark. 1993. Stable-nitrogen isotope fractionation during isotope enrichment in avian tissues due to fasting and nutritional stress: Implications for isotopic analysis of diet. Condor 95:388-394 https://doi.org/10.2307/1369361
  20. Hoefs J. 1980. Stable Isotope Geochemistry. Berlin: Springer-Ver-lag
  21. Hyun KH, IC Pang, JM Klinck, KS Choi, JB Lee, EN Powell, EE Hofmann and EA Bochenek. 2001. The effect of food composition on Pacific oyster Crassostrea gigas (Thunberg) growth in Korea: a modeling study. Aquaculture 199:41-62 https://doi.org/10.1016/S0044-8486(01)00509-9
  22. Knox GA. 1987. Estuarine Ecosystems: A Systems Approach, CRC Press Inc., Boca Raton, Florida. 1:289
  23. Kobayashi M, EE Hofmann, EN Powell, JM Klinck and K Kusaka. 1997. A population dynamics model for the Japanese oyster, Crassostrea gigas. Aquaculture 149:285-321 https://doi.org/10.1016/S0044-8486(96)01456-1
  24. Kwon OJ. 1993. An illustrated book of the Korean Shellfish 1:446
  25. Kusaki Y. 1991. Oyster culture in Japan and adjacent countries: Crassostrea gigas (Thunberg). pp.227-243. In (Menzel W ed.). Estuarine and Marine Bivalve Mollusk Culture. CRC Press. Boca Raton
  26. Marcelo GG, SR Ilie and V Humberto. 2003. Variation in lipid, protein, and carbohydrate content during the embryonic development of the crayfish cherax quadricarinatus (decapoda: parastacidae). J. Crust. Biol. 23:1-6 https://doi.org/10.1651/0278-0372(2003)023[0001:VILPAC]2.0.CO;2
  27. McClelland JW, I Valiela and RH Michener. 1997. Nitrogenstable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Limnol. Oceanogr. 42:930-937 https://doi.org/10.4319/lo.1997.42.5.0930
  28. McKinney RA, JL Lake, MA Charpentier and S Ryba. 2002. Using mussel isotope ratios to assess anthropogenic nitrogen input to freshwater ecosystems. Environ. Monit. Assess.74: 167-192 https://doi.org/10.1023/A:1013824220299
  29. Morris RJ, MJ McCartney, IR Joint and GA Robinson. 1985. Further studies of a spring phytoplankton bloom in an enclosed experimental ecosystem. J. Exp. Mar. Biol. Ecol. 86:151-170 https://doi.org/10.1016/0022-0981(85)90028-0
  30. Minagawa M and E Wada. 1984. Stepwise enrichment of $^15$N along food chains: Further evidence and the relation between $\delta$$^15$N and animal age. Geochim. Cosmochim. Acta 48:1135-1140 https://doi.org/10.1016/0016-7037(84)90204-7
  31. Nelson Th C. 1928. Relation of spawning of the oyster to temperature. Ecology 9:145-154
  32. Park HS and SK Yi. 2002. Assessment of benthic environment conditions of oyster and mussel farms based on macrobenthos in Jinhae bay. J. Korean Soc. Mar. Environ. Engin. 5:68-75
  33. Peterson BJ and B Fry. 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18:293-320 https://doi.org/10.1146/annurev.es.18.110187.001453
  34. Pinckney JL and RG Zingmark. 1993. Modeling the annual production of intertidal benthic microalgae in estuarine ecosystems. J. Phycol. 29:396-407
  35. Piola RF, SK Moore and IM Suthers. 2006. Carbon and nitrogen stable isotope analysis of three types of oyster tissue in an impacted estuary. Estuar. Coast. Shelf. Sci. 66: 255-266 https://doi.org/10.1016/j.ecss.2005.08.013
  36. Rana KJ. 1998. Global overview of production and production trend. FAO Fish. Circ. 163
  37. Ranson G. 1950. Le chamber promyaire et la classification Zoologoque des Ostreides. Journal de Conchyliologie 90
  38. Ranson G. 1960. The prolem of physiological species with special reference to oysters and oyster drills. Ecology 31:109-118 https://doi.org/10.2307/1931365
  39. Riera P and P Richard. 1996. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Ole'ron. Estuar. Coast. Shelf. Sci. 42:347-360 https://doi.org/10.1006/ecss.1996.0023
  40. Riera P. 1998. $\delta$$^15$N of organic matter sources and benthic invertebrates along an estuarine gradient in Marennes-Ole'ron Bay (France): implications for the study of trophic structure. Mar. Ecol. Prog. Ser. 166:143-150 https://doi.org/10.3354/meps166143
  41. Ventilla RF. 1984. Recent developments in the Japanese oyster culture industry. Adv. Mar. Biol. 21:1-57 https://doi.org/10.1016/S0065-2881(08)60098-X