Domestic earthquake prediction using bayesian approach

베이지안 기법을 이용한 국내 지진 사고 예측

  • 양희중 (청주대학교 산업정보시스템공학과)
  • Received : 2009.08.06
  • Accepted : 2009.12.09
  • Published : 2009.12.30

Abstract

We predict the earthquake rate in Korea following Bayesian approach. We make a model that can utilize the data to predict other levels of earthquake. An event tree model which is a frequently used graphical tool in describing accident initiation and escalation to more severe accident is transformed into an influence diagram model. Prior distributions for earthquake occurrence rate and probabilities to escalating to more severe earthquakes are assumed and likelihood of number of earthquake in a given period of time is assessed. And then posterior distributions are obtained based on observed data. We find that the minor level of earthquake is increasing while major level of earthquake is less likely.

Keywords

References

  1. 경재복, '한번도의 지진자료의 불완전성에 대한 통계적 분석', Journal of Korean Earth Science Society, 14권 4호(1993): 492-499
  2. 김윤신, 이철민, 이승일, '라돈방사능농도의 측정을 통한 지진발생 예측에 관한 연구', 한국 환경 학회지, 12권 6호 (2003): 677-688 https://doi.org/10.5322/JES.2003.12.6.677
  3. 박수희, '한반도의 유감 지진', 기상학회지, 5권 1호 (1969): 45-57
  4. 이기화, '한반도의 역사지진자료', 지구물리, 1권 1호(1998): 3-22
  5. 이기화., 정희옥, 'A study of instrumental earthquake data of the Korean Peninsula', Journal of the geological Society of Korea, 16권(1980): 32-45
  6. 이기화, 이전희, '경상분지에서 발생한 역사지진을 이용한 지진예지 가능성', 지구물리, 7권 2호(2004): 77-87
  7. 이전희, 경재복, 1999, 'Analysis of Seismin Risk in the Middle Part of South Korea', Journal of the geological Society of Korea, 20권 4호(1999): 411-422
  8. 이태욱, 1983, '한번도 계기지진 Data(1905 - 1982)의 분석', Journal of Korean E.S.E.S., 4권 1호 (1983): 9-22
  9. 정봉일, 1981, '한국의 고지진에 관한 연구', 지질학회지, 17권 4호(1981): 257-268
  10. Arabelos, D., Asteriadis, G., Contadakis, M., Zioutas, G., Xu, D., Zhang, C., Zheng, B. 'The use of an outlier detecting method in time series of continuous daily measurements of underground water level and temperature in earthquake prediction investigation', Tectonophysics 338권(2001): 315-323 https://doi.org/10.1016/S0040-1951(01)00086-5
  11. Colombo, D., Gitis, V., de Franco, R., 'Application of pattern recognition techniques to long-term earthquake prediction in central Costa Rica', Engineering Geology 48권(1997): 7-18 https://doi.org/10.1016/S0013-7952(97)81911-4
  12. Hatheway, Allen W., 'Book Review of Fundamentals of Earthquake Prediction by C. Lomnitz, 1994', Wiley, Chichester, Engineering Geology 43권(1996): 81-82 https://doi.org/10.1016/0013-7952(95)00070-4
  13. Kossobokov, V.G., Keilis-Borok, V.I., Smith, S.W., 'Localization of intermediate termearthquake prediction', J. Goephys. Res. 95권(1990): 19763-19772 https://doi.org/10.1029/JB095iB12p19763
  14. Kossobokov, V.G., Romashkova, L.L., Keilis-Borok, V.I., Healy, J.H., 'Testing earthquake prediction algorithms: statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992-1997', Physics of the Earth and Planetary Interiors 111권(1999): 187-196 https://doi.org/10.1016/S0031-9201(98)00159-9
  15. Oliver, R.M., and Yang, Heejoong., 'Bayesian Updating of Event Tree Parameters,' Influence Diagrams, Belief Nets and Decision Analysis, edited by Oliver, R.M. and Smith, J.Q., John Wiley & Sons(1990): 277-296
  16. Rotwain, I., Novikova, O., 'Performance of the earthquake prediction algorithm CN in 22 regions of the world', Physics of the Earth and Planetary Interiors 111권(1999): 207-213 https://doi.org/10.1016/S0031-9201(98)00161-7
  17. Scholz, C.H., Sykes, L.R., Agrawal, Y.P., 1973, 'Earthquake prediction : a physical basis', Science 181, p.803-810 https://doi.org/10.1126/science.181.4102.803
  18. Singh, M., Kumar, M., Jain, R.K., Chatrath, R.P., 1999, Radon ground water related to seismic events, Radiat. Meas. 30, p.465-469 https://doi.org/10.1016/S1350-4487(99)00049-9
  19. Sultankhodajev, A.N., 1984, Hydrogeoseismic precursors to earthquakes. In: Earthquake prediction, UNESCO, Paris, p.181-191
  20. Teng, T.L., 1980, Some recent studies on groundwater radon content as an earthquake precursor, J. Geophys. Res. 85, p.3089-3099 https://doi.org/10.1029/JB085iB06p03089
  21. Vere-Jones, D., 1970, Stochastic models for earthquake occurrence, J. of Roy. Statist. Soc., B32 p.1-62
  22. Wakita, H., Nakamura, Y., sano, Y., 1988, Short-term and intermediate-term geochemical precursors. Pure Appl. Geophys. 126, p.267-278 https://doi.org/10.1007/BF00878999
  23. Wyss, Max, 2001, Why is earthquake prediction research not progressing faster?, Tectonophysics, V0l.338, p.217-223 https://doi.org/10.1016/S0040-1951(01)00077-4
  24. Yang, Heejoong et.al.A Bayesian Approach to Prediction of System failure Rates by Criticalities under Event Trees, 1999, International journal of Production Economics, vol.60, p.623-628 https://doi.org/10.1016/S0925-5273(98)00135-2
  25. Yang, Heejoong, 1999, Approximation Method for failure Rates in a General Event Tree, 공업 경영학회지, 제 22권 제 52호, p.181-189
  26. Yang, Heejoong, 2000, Forecasting and Deciding When to Shutdown a Nuclear Power Plant to Prevent a Severe Accident, 산업경영시스템학회지, 제23권 제56호, p.25-31
  27. Yang, Heejoong, 2000, Deciding the Optimal Shutdown time of a Nuclear Power Plant, IE Interfaces vol. 13, No.2, p.211-216
  28. Zmazek, B., Todorovski, L., Dzeroski, S., Vaupotic, J., Kobal, I., Application of decision trees to the analysis of soil radon data for earthquake prediction, Applied Radiation and Isotopes, Vol.58, p.697-706 https://doi.org/10.1016/S0969-8043(03)00094-0
  29. http://www.kma.go.kr/neis/neis_03_02_01
  30. http://www.kma.go.kr/neis/neis_03_02_02