Evaluation of Catalyst Deactivation and Regeneration Associated with Photocatalysis of Malodorous Sulfurized-Organic Compounds

악취유발 황화유기화합물질의 광촉매분해에 따른 촉매 비활성화와 재생 평가

  • Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University) ;
  • Shin, Myeong-Hee (Department of Environmental Engineering, Kyungpook National University)
  • 조완근 (경북대학교 환경공학과) ;
  • 신명희 (경북대학교 환경공학과)
  • Received : 2009.05.05
  • Accepted : 2009.09.17
  • Published : 2009.11.30

Abstract

This study evaluated the degradation efficiency of malodorous sulfurized-organic compounds by utilizing N- and Sdoped titanium dioxide under visible-light irradiation, and examined the catalyst deactivation and regeneration. Catalyst surface was characterized by employing Fourier-Transform-Infrared-Red (FTIR) spectra. The visible-light-driven photocatalysis techniques were able to efficiently degrade low-level dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) with degradation efficiencies exceeding 97%, whereas they were not effective regarding the removal of high-level DMS and DMDS, with degradation efficiencies of 84 and 23% within 5 hrs of photocatalytic processes. As compared with DMS, DMDS which containes one more sulfur element revealed quick catalyst deactivation. Catalyst deactivation was confirmed by the equality between input and output concentrations of DMD or DMDS, the obsevation of no $CO_2$ generation during a photocatalytic process, and the FTIR spectrum peaks related with sulfur ion compounds, which are major byproducts formed on catalyst surfaces. The mineralization efficiency of DMS at 8 ppm, which was a peak value during a photocatalytic process, was calculated as 144%, exceeding 100%. The catalyst regenerated by high-temperature calcination exhibited higher catalyst recovery efficiency (53 and 58% for DMDS and DMS, respectively) as compared with dry-air and humid-air regeneration processes. However, even the calcined method was unable to totally regenerate deactivated catalysts.

본 연구는 가시광선 조건에서 질소 및 황 도핑 $TiO_2$를 활용하여 악취유발 황화유기화합물질의 분해능을 평가하고, 광촉매 분해시 발생하는 촉매 비활성화와 비활성화된 촉매의 재생에 대해 조사하였다. 적외선 분광법을 이용하여 촉매 표면의 특성을 조사하였다. 가시광선을 이용한 광촉매 기술이 낮은 농도의 황화 이메틸(0.039 ppm)과 이황화 이메틸 (0.027 ppm)은 97% 이상의 높은 효율로 처리할 수 있으나, 촉매 비활성으로 인해 높은 농도(황화 이메틸, 7.8 ppm 및 이황화 이메틸, 5.4 ppm)에 대해서는 광촉매 공정 시간 5시간만에 처리 효율이 황화 이메틸은 84% 그리고 이황화 이메틸은 23%까지 매우 낮게 나타났다. 황화 이메틸에 비하여 황 원소가 하나 더 결합된 이황화 이메틸의 광촉매 분해시 촉매가 빠르게 비활성화되었다. 높은 유입 농도 조건에서 이황화 이메틸 또는 황화 이메틸의 광촉매 반응기의 출구 농도가 유 입농도와 비슷하거나, $CO_2$의 생성률이 제로에 가깝거나, FTIR 스펙트럼 상에서 촉매 표면의 비활성을 유발하는 황 이온 화합물의 피크들이 강하게 나타나, 촉매의 비활성화를 확인하였다. 광촉매 반응기의 유출구에서의 최대 $CO_2$ 농도인 8 ppm에 대해서 황화 이메틸의 광물화 효율을 계산한 결과 144%로서 100%를 초과한 것으로 나타났다. 건조-공기 및 습윤-공기 재생 방법에 비해 고온 소성에 의한 촉매의 재생효율이 높게(이황화 이메틸, 53% 그리고 황화 이메틸, 58%) 나타났으나, 이 또한 촉매 비활성을 유발시키는 황 이온 화합물과 같은 부산물들을 완전히 제거되지는 못하는 것으로 확인되었다.

Keywords

References

  1. Demeestere, K., Dewulf, J., Witte, B. D., and Langenhove, H. V., “Titanium dioxide mediated heterogeneous photocatalytic degradation of gaseous dimethyl sulfide: parameter study and reaction pathways,”Appl. Catal. B., 60, 93-106(2005) https://doi.org/10.1016/j.apcatb.2005.02.023
  2. Hunter, P., and Oyama, S. T., Control of Volatile Organic Compound Emissions: Conventional and Emerging Technologies. John Wiley & Sons Inc., New York, p. 279(2000)
  3. Bordado, J. C. M., and Gomes, J. F. P.,“ Characterization of noncondensable sulphur containing gases from Kraft pulp mills,” Chemosphere., 44, 1011-1016(2001) https://doi.org/10.1016/S0045-6535(00)00483-5
  4. Kato, S., Hirano, Y., Iwata, M., Sano, T., Takeuchi, K., and Matsuzawa, S., “Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide,”Appl. Catal. B., 57, 109-115(2005) https://doi.org/10.1016/j.apcatb.2004.10.015
  5. Kim, K-H., Swan, H., Shon, Z-H., Lee, G., Kim, J., and Kang, C. H., “Monitoring of reduced sulfur compounds in the atmosphere of Gosan, Jeju Island during the Spring of 2001,” Chemosphere., 54, 515-526(2004) https://doi.org/10.1016/j.chemosphere.2003.07.003
  6. Kim, K-H., Jeon, E-C., Choi, Y-J., and Koo, Y-S., “The emission characteristics and the related malodor intensities of gaseous reduced sulfur compounds (RSC) in a large industrial complex,”Atmos. Environ., 40, 4478-4490(2006) https://doi.org/10.1016/j.atmosenv.2006.04.026
  7. Cantau, C., Larribau, S., Pigot, T., Simon, M., Maurette, M. T., and Lacombe, S., “Oxidation of nauseous sulfur compounds by photocatalysis or photosensitization,”Catal. Today., 122, 27-38(2007) https://doi.org/10.1016/j.cattod.2007.01.038
  8. Mirabelli, M. C., and Wing, S., “Proximity to pulp and paper mills and wheezing symptoms among adolescents in North Carolina,”Environ. Res., 102, 96-100(2006) https://doi.org/10.1016/j.envres.2005.12.004
  9. Bouzaza, A., Vallet, C., and Laplanche, A., “Photocatalytic degradation of some VOCs in the gas phase using an annular reactor: Determination of the contribution of mass transfer and chemical reaction steps in the photodegradation process,”J. Photochem. Photobiol. A., 177, 212-217(2006) https://doi.org/10.1016/j.jphotochem.2005.05.027
  10. Ou, H-H., and Lo, S-L., “ Photocatalysis of gaseous trichloroethylene (TCE) over $TiO_{2}$: the effect of oxygen and relative humidity on the generation of dichloroacetyl chloride (DCAC) and phosgene,”J. Hazard. Mater., 146, 302-308(2007) https://doi.org/10.1016/j.jhazmat.2006.12.039
  11. Yu, K. P., Lee, G. W. M., Huang, W. M., Wu, C., and Yang, S., “The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds,”Atmos. Environ., 40, 375-385(2006) https://doi.org/10.1016/j.atmosenv.2005.09.045
  12. Yu, H., Zhang, K., and Rossi, C., “Theoretical study on photocatalytic oxidation of VOCs using nano-$TiO_{2}$ photocatalyst,”J. Photochem. Photobiol. A., 188, 65-73(2007) https://doi.org/10.1016/j.jphotochem.2006.11.021
  13. Zhao, J., and Yang, X., “Photocatalytic oxidation for indoor air purification: a literature review,”Build. Environ., 38, 645-654(2003) https://doi.org/10.1016/S0360-1323(02)00212-3
  14. Canela, M. C., Alberici, R. M., Sofia, R. C., Eberlin, M. N., and Jardim, W. F., “Destruction of malodorous compounds using heterogeneous photocatalysis,”Environ. Sci. Technol., 33, 2788-2792(1999) https://doi.org/10.1021/es980404f
  15. Demeestere, K., Dewulf, J., Ohno, T., Salgado, P. H., and Langenhove, H. V., “Visible light mediated photocatalytic degradation of gaseous trichloroethylene and dimethyl sulfide on modified titanium dioxide,”Appl. Catal. B., 61, 140-149(2005) https://doi.org/10.1016/j.apcatb.2005.04.017
  16. Cantau, C., Larribau, S., Pigot, T., Simon, M., Maurette, M. T., and Lacombe, S., “Oxidation of nauseous sulfur compounds by photocatalysis or photosensitization,”Catal. Today., 122, 27-38(2007) https://doi.org/10.1016/j.cattod.2007.01.038
  17. Vorontsov, A. V., Savinov, E. N., Lion, C., and Smirniotis, P. G., “$TiO_{2}$ reactivation in photocatalytic destruction of gaseous diethyl sulfide in a coil reactor,”Appl. Catal. B., 44, 25-40(2003) https://doi.org/10.1016/S0926-3373(03)00007-9
  18. Gonz$\'{a}$lez-Garc$\'{\i}$a, N., Ayll$\'{o}$n, J. A., Dom$\'{e}$nech, X., and Peral, J., “$TiO_{2}$ deactivation during the gas-phase photocatalytic oxidation of dimethyl sulfide,”Appl. Catal. B., 52, 69-77(2004) https://doi.org/10.1016/j.apcatb.2004.03.016
  19. Guillard, C., Baldassare, D., Duchamp, C., Ghazzal, M. N., and Daniele, S., “Photocatalytic degradation and mineralization of a malodorous compound (dimethyldisulfide) using a continuous flow reactor,”Catal. Today., 122, 160-167(2007) https://doi.org/10.1016/j.cattod.2007.01.059
  20. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., “Visible-light photocatalysis in nitrogen-enhanced titanium oxides,”Science., 293, 269-271(2001) https://doi.org/10.1126/science.1061051
  21. Higashimoto, S., Tanihata, W., Nakagawa, Y., Azuma, M., Ohue, H., and Sakata, Y., “ Effective photocatalytic decomposition of VOC under visible-light irradiation on Nenhanced $TiO_{2}$ modified by vanadium species,”Appl. Catal. A., 340, 98-104(2008) https://doi.org/10.1016/j.apcata.2008.02.003
  22. 환경부, 악취방지법, (2008)
  23. Catalan, L. J. J., Liang, V., Walton, C., and Jia, C. Q., “Effects of process changes on concentrations of individual malodorous sulfur compounds in ambient air near a Kraft pulp plant in Thunder bay, Ontario, Canada,”WIT Trans. Ecol. Environ., 101, 437-447(2007)
  24. Kim, K-H., Jeon, E-C., Koo, Y-S., Im, M-S., Youn, and Y-H., “An on-line analysis of reduced sulfur gases in the ambient air surrounding a large industrial complex,”Atmos. Environ., 41, 3829-3840(2007) https://doi.org/10.1016/j.atmosenv.2007.01.032
  25. Peral, J., and Ollis, J., “TiO2 photocatalyst deactivation by gas phase oxidation of heteroatom organics,”J. Mol. Catal., 115, 347-354(1997) https://doi.org/10.1016/S1381-1169(96)00330-5
  26. Nosaka Y., Matsushita M., Nishino J., and Nosaka A. Y., “Nitrogen- enhanced titanium dioxide photocatalysts for visible response prepared by using organic compounds,”Sci. Technol. Adv. Mat., 6, 143-148(2005) https://doi.org/10.1016/j.stam.2004.11.006
  27. Stevens, L., Lanning, J. A., Anderson, L. G., Jacoby, W. A., and Chornet, N., “Investigation of the photocatalytic oxidation of low-level carbonyl compounds,”J. Air Waste Manage. Assoc., 48, 979-984(1998) https://doi.org/10.1080/10473289.1998.10463748
  28. Jacoby, W. A., Blake, D. M., Fennell, J. A., Boulter, J. E., Vargo L. M., and George, M. C., “Heterogeneous photocatalysis for control of volatile organic compounds in indoor air,”J. Air Waste Manage. Assoc., 46, 891-898(1996) https://doi.org/10.1080/10473289.1996.10467525
  29. Noguchi, T., Fujishima, A., Sawunytama, P., and Hashimoto, K., “Photocatalytic degradation of gaseous formaldehyde using $TiO_{2}$ film,”Environ. Sci. Technol., 32, 3831-3833(1998) https://doi.org/10.1021/es980299+
  30. Obee, T. N., and Brown, R. T., “$TiO_{2}$ photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene,”Environ. Sci. Technol., 29, 1223-1231(1995) https://doi.org/10.1021/es00005a013
  31. Van Gerven, T., Mul, G., Moulijn, J., and Stankiewicz, A., “A review of intensification of photocatalytic processes,”Chem. Eng. Prog., 46, 781-789(2007) https://doi.org/10.1016/j.cep.2007.05.012
  32. Yang, R., Zhang, Y., Xu, Q., and Mo, J., “A mass transfer method for measuring the reaction coefficients of a photocatalyst,”Atmos. Environ., 41, 1221-1229(2007) https://doi.org/10.1016/j.atmosenv.2006.09.043
  33. Coronado, J. M., Zorn, M. E., Tejedor-Tejedor, I., and Anderson, M. A.,“ Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films: a kinetic study on the influence of water vapor,”Appl. Catal. B., 43, 329-344(2003) https://doi.org/10.1016/S0926-3373(03)00022-5
  34. Wei, F., Ni, L., and Cui, P.,“ Preparation and characterization of N-S-codoped $TiO_{2}$ photocatalyst and its photocatalytic activity,” J. Hazard. Mater., 156, 135-140(2008) https://doi.org/10.1016/j.jhazmat.2007.12.018
  35. Peng, T., Zhao, D., Dai, K., Shi, W., and Hirao, K.,“ Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity,”J. Phys. Chem. B., 109, 4947-4952(2005) https://doi.org/10.1021/jp044771r
  36. Soler-Illia, G. J. A. A., Louis, A., and Sanchez, C., “Synthesis and Characterization of mesostructured titania-based materials through evaporation-induced self-assembly,”Chem. Mater., 14, 750-759(2002) https://doi.org/10.1021/cm011217a