Acidogenesis of Lipids-Containing Wastewater in Anaerobic Sequencing Batch Reactor

혐기성 연속 회분식 반응조를 이용한 지질 함유 폐수의 산발효 특성

  • Kim, Sang-Hyoun (Green Process R&D Department, Korea Institute of Industrial Tehcnology) ;
  • Shin, Hang-Sik (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 김상현 (한국생산기술연구원 그린공정연구부) ;
  • 신항식 (한국과학기술원 건설 및 환경공학과)
  • Received : 2009.10.07
  • Accepted : 2009.11.12
  • Published : 2009.12.31

Abstract

The partial lipid degradation with the saturation of double-bond at the acidogenesis stage is known to help subsequent methanogenesis during anaerobic digestion. Acidogenic reactions in an anaerobic sequencing batch reactor (ASBR) and a continuously stirred tank reactor (CSTR) were carried out to compare their performances. A mixture of two unsaturated (oleate and linoleate) and two saturated (palmitate and stearate) long-chain fatty acids (LCFAs) was used as a model substrate. Biomass retention in the ASBR contributed to the enhanced performance at hydraulic retention time (HRT) below 15 hr. Biomass retention in the ASBR contributed to the enhanced performance compared to CSTR even at shorter HRT. ASBR would be a proper reactor configuration for the acidogenesis of lipid-containing wastewater.

혐기성 소화 시 산발효 단계에서 지질 성분이 부분적으로 분해되고 지질 내 이중 결합이 포화됨을 통해 후단의 메탄발효 효율이 향상됨이 보고된 바 있다. 본 연구에서는 혐기성 연속 회분식 반응조(anaerobic sequencing batch reactor, 이하 ASBR) 및 연속 흐름 교반 반응조(continuously stirred tank reactor, 이하 CSTR) 형태의 산생성조를 각각 운전하여 지질 분해 및 독성 저감 효율을 살펴보았다. 기질로는 두 가지 불포화(oleate and linoleate), 두 가지 포화(palmitate and stearate) 지방산(long-chain fatty acids, 이하 LCFA)로 구성된 LCFA 혼합물을 사용하였다. 반응조 내의 높은 미생물 보유량에 의해 ASBR이 수리학적 체류시간(hydraulic retention time, 이하 HRT) 12 hr 이하에서 우월한 성능을 보였다. HRT 9시간에서 ASBR은 36.7%의 LCFA 분해, 14.3%의 이중결합 포화, 43.8%의 산생성 효율을 보였으며, 이는 HRT 15시간의 CSTR 보다 각각 19%, 10%, 21% 높은 수치였다. 지질 함유 폐수의 혐기성 소화 시 ASBR을 이용한 산발효가 효과적일 것으로 판단된다.

Keywords

References

  1. Liu, Y., and Tay, J. H., “State of the art of biogranulation technology for wastewater treatment,” Biotechnol. Adv., 22(7), 533-563(2004) https://doi.org/10.1016/j.biotechadv.2004.05.001
  2. Mahmoud, N, Zeeman., and G, Gijzen, H, “Solids removal in upflow anaerobic reactors, a review,” Bioresour. Technol., 90(1), 1-9(2003) https://doi.org/10.1016/S0960-8524(03)00095-6
  3. Kim, S.-H., Han, S.-K., and Shin, H.-S., “Two-phase anaerobic treatment system for fat-containing wastewater,” J. Chem. Technol. Biotechnol., 79, 63-71(2004). https://doi.org/10.1002/jctb.939
  4. Hwu, C. S., Tseng, S. K., Yuan, C. Y., Kulik, Z., and Lettinga, G., “Biosorption of long-chain fatty acids in UASB treatment process,” Water Res., 32(5), 1571-1579(1998) https://doi.org/10.1016/S0043-1354(97)00352-7
  5. Komatsu, T., Hanaki, K., and Matsuo, T., “Prevention of Lipid Inhibition in Anaerobic Processes by Introducing a Two-phase System,” Water Sci. Technol., 23, 1189-1200(1991)
  6. Kim, S.-H., and Shin, H.-S., “Enhanced lipid degradation in upflow anaerobic sludge blanket reactor by integration with acidogenic reactor,” Water Environ. Res. (accepted)
  7. Beccari, M., Majone, M., and Torrisi, L., “Two-reactor system with partial phase separation for anaerobic treatment of olive oil mill effluents,” Water Sci. Technol., 38(4-5), 53-60(1998) https://doi.org/10.1016/S0273-1223(98)00497-1
  8. Kim, S.-H., Han, S.-K., and Shin, H.-S. “Kinetics of LCFA inhibition on acetoclastic methanogenesis, propionate degradation and $\beta$-oxidation,” J. Environ. Sci. Health. A39 1025-1037(2004)
  9. Kim, S.-H., Han, S.-K., and Shin, H.-S. “Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time,” Proc. Biochem., 43(2), 213-218 https://doi.org/10.1016/j.procbio.2007.11.007