DOI QR코드

DOI QR Code

A New Strategy to Improve the Efficiency and Sustainability of Candida parapsilosis Catalyzing Deracemization of (R,S)-1-Phenyl-1,2-Ethanediol Under Non-Growing Conditions: Increase of NADPH Availability

  • Nie, Yao (Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University) ;
  • Xu, Yan (Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University) ;
  • Hu, Qing Sen (Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University) ;
  • Xiao, Rong (Center for Advanced Biotechnology and Medicine, Rutgers University)
  • Received : 2008.04.22
  • Accepted : 2008.06.13
  • Published : 2009.01.31

Abstract

Microbial oxidoreductive systems have been widely used in asymmetric syntheses of optically active alcohols. However, when reused in multi-batch reaction, the catalytic efficiency and sustainability of non-growing cells usually decreased because of continuous consumption of required cofactors during the reaction process. A novel method for NADPH regeneration in cells was proposed by using pentose metabolism in microorganisms. Addition of D-xylose, L-arabinose, or D-ribose to the reaction significantly improved the conversion efficiency of deracemization of racemic 1-phenyl-1,2-ethanediol to (S)-isomer by Candida parapsilosis cells already used once, which afforded the product with high optical purity over 97%e.e. in high yield over 85% under an increased substrate concentration of 15 g/l. Compared with reactions without xylose, xylose added to multi-batch reactions had no influence on the activity of the enzyme catalyzing the key step in deracemization, but performed a promoting effect on the recovery of the metabolic activity of the non-growing cells with its consumption in each batch. The detection of activities of xylose reductase and xylitol dehydrogenase from cell-free extract of C. parapsilosis made xylose metabolism feasible in cells, and the depression of the pentose phosphate pathway inhibitor to this reaction further indicated that xylose facilitated the NADPH-required deracemization through the pentose phosphate pathway in C. parapsilosis. moreover, by investigating the cofactor pool, the xylose addition in reaction batches giving more NADPH, compared with those without xylose, suggested that the higher catalytic efficiency and sustainability of C. parapsilosis non-growing cells had resulted from xylose metabolism recycling NADPH for the deracemization.

Keywords

References

  1. Boonstra, B., D. A. Rathbone, C. E. French, E. H. Walker, and N. C. Bruce. 2000. Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone. Appl. Environ. Microbiol. 66: 5161-5166 https://doi.org/10.1128/AEM.66.12.5161-5166.2000
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Dahl, A. C. and J. O. Madsen. 1998. Baker's yeast: Production of D- and L-3-hydroxy esters. Tetrahedr. Asymm. 9: 4395-4417 https://doi.org/10.1016/S0957-4166(98)00471-6
  4. Gupte, S. A., T. Okada, I. F. McMurtry, and M. Oka. 2006. Role of pentose phosphate pathway-derived NADPH in hypoxic pulmonary vasoconstriction. Pulm. Pharmacol. Ther. 19: 303-309 https://doi.org/10.1016/j.pupt.2005.08.002
  5. Haberland, J., A. Kriegesmann, E. Wolfram, W. Hummel, and A. Liese. 2002. Diastereoselective synthesis of optically active (2R,5R)-hexanediol. Appl. Microbiol. Biotechnol. 58: 595-599 https://doi.org/10.1007/s00253-002-0936-5
  6. Ichinose, H., N. Kamiya, and M. Goto. 2005. Enzymatic redox cofactor regeneration in organic media: Functionalization and application of glycerol dehydrogenase and soluble transhydrogenase in reverse micelles. Biotechnol. Prog. 21: 1192-1197 https://doi.org/10.1021/bp0500765
  7. Ishige, T., K. Honda, and S. Shimizu. 2005. Whole organism biocatalysis. Curr. Opin. Chem. Biol. 9: 174-180 https://doi.org/10.1016/j.cbpa.2005.02.001
  8. Itoh, N., M. Matsuda, M. Mabuchi, T. Dairi, and J. Wang. 2002. Chiral alcohol production by NADH-dependent phenylacetaldehyde reductase coupled with in situ regeneration of NADH. Eur. J. Biochem. 269: 2394-2402 https://doi.org/10.1046/j.1432-1033.2002.02899.x
  9. Iwasaki, F., T. Maki, W. Nakashima, O. Onomura, and Y. Matsumura. 1999. Nonenzymatic kinetic resolution of 1,2-diols catalyzed by organotin compound. Org. Lett. 1: 969-972 https://doi.org/10.1021/ol9908373
  10. Jeffries, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17: 320-326 https://doi.org/10.1016/j.copbio.2006.05.008
  11. Jeffries, T. W. and Y. S. Jin. 2004. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63: 495-509 https://doi.org/10.1007/s00253-003-1450-0
  12. Jiang, Q., S. Yao, and L. Mei. 2002. Tolerance of immobilized Baker's yeast in organic solvents. Enzyme Microb. Technol. 30:721-725 https://doi.org/10.1016/S0141-0229(02)00048-0
  13. Karhumaa, K., R. Fromanger, B. Hahn-Hagerdal, and M. F. Gorwa-Grauslund. 2007. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73:1039-1046 https://doi.org/10.1007/s00253-006-0575-3
  14. Kataoka, M., K. Kita, M. Wada, Y. Yasohara, J. Hasegawa, and S. Shimizu. 2003. Novel bioreduction system for the production of chiral alcohols. Appl. Microbiol. Biotechnol. 62: 437-445 https://doi.org/10.1007/s00253-003-1347-y
  15. Kataoka, M., Y. Nomura, S. Shimizu, and H. Yamada. 1992. Enzymes involved in the NADPH regeneration system coupled with asymmetric reduction of carbonyl compounds in microorganisms. Biosci. Biotech. Biochem. 56: 820-821 https://doi.org/10.1271/bbb.56.820
  16. Koeller, K. M. and C. H. Wong. 2001. Enzymes for chemical synthesis. Nature 409: 232-240 https://doi.org/10.1038/35051706
  17. Kroutil, W., H. Mang, K. Edegger, and K. Faber. 2004. Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr. Opin. Chem. Biol. 8: 120-126 https://doi.org/10.1016/j.cbpa.2004.02.005
  18. Liese, A., M. Karutz, J. Kamphuis, C. Wandrey, and U. Kragl. 1996. Resolution of 1-phenyl-1,2-ethanediol by enantioselective oxidation overcoming product inhibition by continuous extraction. Biotechnol. Bioeng. 51: 544-550 https://doi.org/10.1002/(SICI)1097-0290(19960905)51:5<544::AID-BIT6>3.0.CO;2-C
  19. Lima, L. H. A., C. G. Pinheiro, L. M. P. de Moraes, S. M. de Freitas, and F. A. G. Torres. 2006. Xylitol dehydrogenase from Candida tropicalis: Molecular cloning of the gene and structural analysis of the protein. Appl. Microbiol. Biotechnol. 73: 631-639 https://doi.org/10.1007/s00253-006-0525-0
  20. Lv, T., Y. Xu, X. Mu, and Y. Nie. 2007. Promotion effect of xylose co-substrate on stability of catalytic system for asymmetric redox of (R,S)-1-phenyl-1,2-ethanediol to its (S)-enantiomer by Candida parapsilosis. Chin. J. Catal. 28: 446-450 https://doi.org/10.1016/S1872-2067(07)60039-4
  21. Matsuyama, A., H. Yamamoto, N. Kawada, and Y. Kobayashi. 2001. Industrial production of (R)-1,3-butanediol by new biocatalysts. J. Mol. Catal. B Enzym. 11: 513-521 https://doi.org/10.1016/S1381-1177(00)00032-1
  22. Mertens, R., L. Greine, E. C. D. van den Ban, H. B. C. M. Haaker, and A. Liese. 2003. Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration. J. Mol. Catal. B Enzym. 24-25: 39-52 https://doi.org/10.1016/S1381-1177(03)00071-7
  23. Nakamura, K., Y. lnoue, and A. Ohno. 1995. Improvement of enantioselectivity of microbial reduction by using organic solvent redox coupler system. Tetrahedron. Lett. 36: 265-266 https://doi.org/10.1016/0040-4039(94)02188-H
  24. Nie, Y., Y. Xu, and X. Q. Mu. 2004. Highly enantioselective conversion of racemic 1-phenyl-1,2-ethanediol by stereoinversion involving a novel cofactor-dependent oxidoreduction system of Candida parapsilosis CCTCC M203011. Org. Process Res. Dev. 8: 246-251 https://doi.org/10.1021/op0341519
  25. Nie, Y., Y. Xu, X. Q. Mu, H. Y. Wang, M. Yang, and R. Xiao. 2007. Purification, characterization, gene cloning and expression of a novel alcohol dehydrogenase with anti-Prelog stereospecificity from Candida parapsilosis. Appl. Environ. Microbiol. 73: 3759-3764 https://doi.org/10.1128/AEM.02185-06
  26. Panke, S., M. Held, and M. Wubbolts. 2004. Trends and innovations in industrial biocatalysis for the production of fine chemicals. Curr. Opin. Biotechnol. 15: 272-279 https://doi.org/10.1016/j.copbio.2004.06.011
  27. Pitkanen, J. P., A. Aristidou, L. Salusjarvi, L. Ruohonen, and M. Penttila. 2003. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab. Eng. 5: 16-31 https://doi.org/10.1016/S1096-7176(02)00012-5
  28. Schmid, A., J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, and B. Witholt. 2001. Industrial biocatalysis today and tomorrow. Nature 409: 258-268 https://doi.org/10.1038/35051736
  29. Schoemaker, H. E., D. Mink, and M. G. Wubbolts. 2003. Dispelling the myths-biocatalysis in industrial synthesis. Science 299: 1694-1697 https://doi.org/10.1126/science.1079237
  30. Strauss, U. T., U. Felfer, and K. Faber. 1999. Biocatalytic transformation of racemates into chiral building blocks in 100% chemical yield and 100% enantiomeric excess. Tetrahedr. Asymm. 10: 107-117 https://doi.org/10.1016/S0957-4166(98)00490-X
  31. Sultana, I., R. M. Mizanur, K. Takeshita, G. Takada, and K. Izumori. 2003. Direct production of D-arabinose from D-xylose by a coupling reaction using D-xylose isomerase, D-tagatose 3-epimerase and D-arabinose isomerase. J. Biosci. Bioeng. 95:342-347 https://doi.org/10.1016/S1389-1723(03)80065-8
  32. Timasheff, S. N. 1993. The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22:67-97 https://doi.org/10.1146/annurev.bb.22.060193.000435
  33. Tishkov, V. I., A. G. Galkin, V. V. Fedorchuk, P. A. Savitsky, A. M. Rojkova, H. Gieren, and M. R. Kula. 1999. Pilot scale production and isolation of recombinant NAD+- and NADP+- specific formate dehydrogenases. Biotechnol. Bioeng. 64: 187-193 https://doi.org/10.1002/(SICI)1097-0290(19990720)64:2<187::AID-BIT7>3.0.CO;2-0
  34. Urlacher, V. B. and R. D. Schmid. 2006. Recent advances in oxygenase-catalyzed biotransformations. Curr. Opin. Chem. Biol. 10: 156-161 https://doi.org/10.1016/j.cbpa.2006.02.001
  35. van der Donk, W. A. and H. Zhao. 2003. Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol. 14:421-426 https://doi.org/10.1016/S0958-1669(03)00094-6
  36. Voss, C. V., C. C. Gruber, and W. Kroutil. 2008. Deracemization of secondary alcohols through a concurrent tandem biocatalytic oxidation and reduction. Angew. Chem. Int. Ed. Engl. 47: 741-745 https://doi.org/10.1002/anie.200703296
  37. Walton, A. Z. and J. D. Stewart. 2002. An efficient enzymatic Baeyer-Villiger oxidation by engineered Escherichia coli cells under non-growing conditions. Biotechnol. Prog. 18: 262-268 https://doi.org/10.1021/bp010177c
  38. Yamamoto, H., A. Matsuyama, and Y. Kobayashi. 2002. Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant Escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase. Biosci. Biotechnol. Biochem. 66: 481-483 https://doi.org/10.1271/bbb.66.481
  39. Zhang, Z., J. Yu, and R. C. Stanton. 2000. A method for determination of pyridine nucleotides using a single extract. Anal. Biochem. 285: 163-167 https://doi.org/10.1006/abio.2000.4701

Cited by

  1. Asymmetric synthesis of (R)-1,3-butanediol from 4-hydroxy-2-butanone by a newly isolated strain Candida krusei ZJB-09162 vol.94, pp.4, 2009, https://doi.org/10.1007/s00253-012-3942-2
  2. Metabolic profiles of planktonic and biofilm cells of Candida orthopsilosis vol.11, pp.10, 2016, https://doi.org/10.2217/fmb-2016-0025
  3. Effective Biotransformation of Ethyl 4-Chloro-3-Oxobutanoate into Ethyl (S)-4-Chloro-3-Hydroxybutanoate by Recombinant E. coli CCZU-T15 Whole Cells in [ChCl][Gly]–Water Media vol.181, pp.4, 2009, https://doi.org/10.1007/s12010-016-2288-0
  4. Cloning, Expression and Characterization of a Highly Active Alcohol Dehydrogenase for Production of Ethyl (S)-4-Chloro-3-Hydroxybutyrate vol.59, pp.2, 2019, https://doi.org/10.1007/s12088-019-00795-0
  5. Improved Bio-Synthesis of 2,5-bis(hydroxymethyl)furan by Burkholderia contaminans NJPI-15 With Co-substrate vol.9, pp.None, 2009, https://doi.org/10.3389/fchem.2021.635191