DOI QR코드

DOI QR Code

Thiosulfate Oxidation and Mixotrophic Growth of Methylobacterium goesingense and Methylobacterium fujisawaense

  • Anandham, R. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Indiragandhi, P. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Madhaiyan, M. (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Chung, Jong-Bae (Division of Life and Environmental Sciences, Daegu University) ;
  • Ryu, Kyoung-Yul (Organic Farming Division, National Institute of Agricultural Science and Technology, Rural Development Administration (RDA)) ;
  • Jee, Hyeong-Jin (Organic Farming Division, National Institute of Agricultural Science and Technology, Rural Development Administration (RDA)) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2008.02.12
  • Accepted : 2008.05.30
  • Published : 2009.01.31

Abstract

The mixotrophic growth with methanol plus thiosulfate was examined in nutrient-limited mixotrophic condition for Methylobacterium goesingense CBMB5 and Methylobacterium fujisawaense CBMB37. Thiosulfate oxidation increased the growth and protein yield in mixotrophic medium that contained 150mM methanol and 20mM sodium thiosulfate, at 144 h. Respirometric study revealed that thiosulfate was the most preferable reduced inorganic sulfur source, followed by sulfite and sulfur. M. goesingense CBMB5 and M. fujisawaense CBMB37 oxidized thiosulfate directly to sulfate, and intermediate products of thiosulfate oxidation such as polythionates, sulfite, and sulfur were not detected in spent medium and they did not yield positive amplification for tested soxB primers. Enzymes of thiosulfate oxidation such as rhodanese and sulfite oxidase activities were detected in cell-free extracts of M. goesingense CBMB5, and M. fujisawaense CBMB37, and thiosulfate oxidase (tetrathionate synthase) activity was not observed. It indicated that both the organisms use the "non-S4 intermediate" sulfur oxidation pathway for thiosulfate oxidation. It is concluded from this study that M. goesingense CBMB5, and M. fujisawaense CBMB37 exhibited mixotrophic metabolism in medium containing methanol plus thiosulfate and that thiosulfate oxidation and the presence of a "Paracoccus sulfur oxidation" (PSO) pathway in methylotrophic bacteria are species dependant.

Keywords

References

  1. Anandham, R., P. Indira Gandhi, M. Madhaiyan, K. Kim, W. Yim, V. S. Saravanan, J. Chung, and T. M. Sa. 2007. Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae. Can. J. Microbiol. 53: 869-876 https://doi.org/10.1139/W07-057
  2. Appia-Ayme, C., P. J. Little, Y. Matsumoto, A. P. Leech, and B. C. Berks. 2001. Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J. Bacteriol. 183: 6107-6118 https://doi.org/10.1128/JB.183.20.6107-6118.2001
  3. Borodina, E., D. P. Kelly, F. A. Rainey, N. L. Ward-Rainey, and A. P. Wood. 2000. Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch. Microbiol. 173: 425-437 https://doi.org/10.1007/s002030000165
  4. Cha, J. M., J. S. Hyun, H. R. Sung, and I. K. Sun. 2007. Hydrogen sulfide removal by immobilized Thiobacillus novellas on $SiO_2$ in a fluidized bed reactor. J. Microbiol. Biotechnol. 17:320-324
  5. Charles, A. M. and I. Suzuki. 1966. Mechanism of thiosulfate oxidation by Thiobacillus novellus. Biochim. Biophys. Acta 128:510-521 https://doi.org/10.1016/0926-6593(66)90012-9
  6. Das, S. K. and A. K. Mishra. 1996. Transposon mutagenesis affecting thiosulfate oxidation in Bosea thiooxidans, a new chemolithotrophic bacterium. J. Bacteriol. 178: 3628-3633 https://doi.org/10.1128/jb.178.12.3628-3633.1996
  7. de Zwart, J. M. M., P. N. Nelisse, and J. G. Kuenen. 1996. Isolation and characterization of Methylophaga sulfidovorans sp. nov., an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol. Ecol. 20: 261-270 https://doi.org/10.1111/j.1574-6941.1996.tb00324.x
  8. Frank, J. and J. A. Duine. 1990. Methanol dehydrogenase from Hyphomicrobium X. Methods Enzymol. 188: 202-209 https://doi.org/10.1016/0076-6879(90)88034-8
  9. Friedrich, C. G., D. Rother, F. Bardischewsky, A. Quentmeier, and J. Fischer. 2001. Oxidation of inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl. Environ. Microbiol. 67: 2873-2882 https://doi.org/10.1128/AEM.67.7.2873-2882.2001
  10. Fujimura, Y. K. and H. Kuraishi. 1980. Characterization of Thiobacillus novellus and its thiosulfate oxidation. J. Gen. Appl. Microbiol. 26: 357-367 https://doi.org/10.2323/jgam.26.357
  11. Ghosh, W. and P. Roy. 2007. Chemolithoautotrophic oxidation of thiosulfate, tetrathionate and thiocyanate by a novel rhizobacterium belonging to the genus Paracoccus. FEMS Microbiol. Lett. 270: 124-131 https://doi.org/10.1111/j.1574-6968.2007.00670.x
  12. Jung, S. J., K. H. Jang, E. H. Shin, S. K. Park, and C. H. Park. 2005. Characteristics of sulfur oxidation by a newly isolated Burkholderia spp. J. Microbiol. Biotechnol. 15: 716-721
  13. Kelly, D. P. and A. P. Wood. 1994. Synthesis and determination of thiosulfate and polythionates. Methods Enzymol. 243: 475-501 https://doi.org/10.1016/0076-6879(94)43037-3
  14. Kelly, D. P., J. K. Shergill, W. P. Lu, and A. P. Wood. 1997. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71: 95-107 https://doi.org/10.1023/A:1000135707181
  15. Kolmert, A., P. Wikstr$\ddot{o}$m, and K. B. Hallberg. 2000. A fast and simple turbidometric method for the determination of sulfate-reducing bacterial cultures. J. Microbiol. Methods 41:179-184 https://doi.org/10.1016/S0167-7012(00)00154-8
  16. Lahiri, C., S. Mandal, W. Ghosh, B. Dam, and P. Roy. 2006. A novel gene cluster soxSRT is essential for the chemolithotrophic oxidation of thiosulfate and tetrathionate by Pseudaminobacter salicylatoxidans KCT001. Curr. Microbiol. 52: 267-273 https://doi.org/10.1007/s00284-005-0176-x
  17. Lowry, O. H., A. Rosebrough, A. L. Farr, and R. J. Randal. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275
  18. Madhaiyan, M., B. Y. Kim, S. Poonguzhali, S. W. Kwon, M. H. Song, J. H. Ryu, S. J. Go, B. S. Koo, and T. M. Sa. 2007. Methylobacterium oryzae sp. nov., a novel aerobic pinkpigmented, facultatively methylotrophic, 1-aminocyclopropane- 1-carboxylate deaminase-producing bacterium isolated from rice. Int. J. Syst. Evol. Microbiol. 57: 326-331 https://doi.org/10.1099/ijs.0.64603-0
  19. Madhaiyan, M., S. Poonguzhali, S. W. Kwon, M. H. Song, and T. M. Sa. 2008. Molecular characterization of Burkholderia strains isolated from rice cultivars (Oryza sativa L.) for species identification and phylogenetic grouping. J. Microbiol. Biotechnol. 18: 1005-1010
  20. Matin, A. 1978. Organic nutrition of chemolithotrophic bacteria. Annu. Rev. Microbiol. 32: 433-468 https://doi.org/10.1146/annurev.mi.32.100178.002245
  21. Meyer, B., J. F. Imhoff, and J. Kuever. 2007. Molecular analysis of the distribution and phylogeny of the soxB among sulfuroxidizing bacteria-evolution of the Sox sulfur oxidation enzyme system. Environ. Microbiol. 9: 2957-2977 https://doi.org/10.1111/j.1462-2920.2007.01407.x
  22. Padden, A. N., D. P. Kelly, and A. P. Wood. 1998. Chemolithoautotrophy and mixotrophy in the thiophene-2-carboxylic acid-utilizing Xanthobacter tagetidis. Arch. Microbiol. 169: 249-256 https://doi.org/10.1007/s002030050568
  23. Perez, R. and A. Matin. 1980. Growth of Thiobacillus novellus on mixed substrates (mixotrophic growth). J. Bacteriol. 142: 633-638
  24. Petri, R., L. Podgorsek, and J. F. Imhoff. 2001. Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol. Lett. 197: 171-178 https://doi.org/10.1111/j.1574-6968.2001.tb10600.x
  25. Poonguzhali, S., M. Madhaiyan, and T. M. Sa. 2007. Production of acyl homoserine lactone quorum-sensing signals is wide-spread in Gram-negative Methylobacterium. J. Microbiol. Biotechnol. 17: 226-223
  26. Singleton, D. R. and D. Smith. 1988. Improved assay for rhodanese in Thiobacillus spp. Appl. Environ. Microbiol. 54:2866-2867
  27. Sorbo, B. 1957. A colorimetric method for the determination of thiosulfate. Biochim. Biophys. Acta 23: 412-416 https://doi.org/10.1016/0006-3002(57)90346-3
  28. Sorokin, D. Y., T. P. Tourova, E. M. Spiridonova, F. A. Rainey, and G. Muyzer. 2005. Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. Int. J. Syst. Evol. Microbiol. 55: 1069-1075 https://doi.org/10.1099/ijs.0.63415-0
  29. Trudinger, P. A. 1961. Thiosulfate oxidation and cytochromes in Thiobacillus X2 thiosulfate oxidizing enzyme. Biochem. J. 78: 680-686 https://doi.org/10.1042/bj0780680
  30. Truper, H. G. and H. G. Schlegel. 1964. Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30: 225-238 https://doi.org/10.1007/BF02046728
  31. Wodara, C., F. Bardischewsky, and C. G. Friedrich. 1997. Cloning and characterization of sulfite dehydrogenase, two ctype cytochromes, and a flavoprotein of Paracoccus denitrificansGB-17: Essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation. J. Bacteriol. 179: 5014-5023 https://doi.org/10.1128/jb.179.16.5014-5023.1997

Cited by

  1. Characterization of Plant Growth-Promoting Traits of Free-Living Diazotrophic Bacteria and Their Inoculation Effects on Growth and Nitrogen Uptake of Crop Plants vol.19, pp.10, 2009, https://doi.org/10.4014/jmb.0903.03028
  2. Diversity of Sulfur-Oxidizing Bacteria in Greenwater System of Coastal Aquaculture vol.162, pp.5, 2009, https://doi.org/10.1007/s12010-009-8886-3
  3. Facultative methylotrophs from the human oral cavity and methylotrophy in strains of Gordonia, Leifsonia, and Microbacterium vol.193, pp.6, 2009, https://doi.org/10.1007/s00203-011-0689-6
  4. Co-Consumption of Methanol and Succinate by Methylobacterium extorquens AM1 vol.7, pp.11, 2009, https://doi.org/10.1371/journal.pone.0048271
  5. Nitrogen‐fixing bacteria with multiple plant growth‐promoting activities enhance growth of tomato and red pepper vol.53, pp.12, 2013, https://doi.org/10.1002/jobm.201200141
  6. Aggregation of selected plant growth promoting Methylobacterium strains: role of cell surface components and hydrophobicity vol.195, pp.3, 2009, https://doi.org/10.1007/s00203-013-0866-x
  7. Genome Information of Methylobacterium oryzae , a Plant-Probiotic Methylotroph in the Phyllosphere vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0106704
  8. Diversity of culturable methylotrophic bacteria in different genotypes of groundnut and their potential for plant growth promotion vol.8, pp.6, 2018, https://doi.org/10.1007/s13205-018-1291-2
  9. Microbiome Community Structure and Functional Gene Partitioning in Different Micro-Niches Within a Sporocarp-Forming Fungus vol.12, pp.None, 2009, https://doi.org/10.3389/fmicb.2021.629352