References
- Anandham, R., P. Indira Gandhi, M. Madhaiyan, K. Kim, W. Yim, V. S. Saravanan, J. Chung, and T. M. Sa. 2007. Thiosulfate oxidation and mixotrophic growth of Methylobacterium oryzae. Can. J. Microbiol. 53: 869-876 https://doi.org/10.1139/W07-057
- Appia-Ayme, C., P. J. Little, Y. Matsumoto, A. P. Leech, and B. C. Berks. 2001. Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. J. Bacteriol. 183: 6107-6118 https://doi.org/10.1128/JB.183.20.6107-6118.2001
- Borodina, E., D. P. Kelly, F. A. Rainey, N. L. Ward-Rainey, and A. P. Wood. 2000. Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch. Microbiol. 173: 425-437 https://doi.org/10.1007/s002030000165
-
Cha, J. M., J. S. Hyun, H. R. Sung, and I. K. Sun. 2007. Hydrogen sulfide removal by immobilized Thiobacillus novellas on
$SiO_2$ in a fluidized bed reactor. J. Microbiol. Biotechnol. 17:320-324 - Charles, A. M. and I. Suzuki. 1966. Mechanism of thiosulfate oxidation by Thiobacillus novellus. Biochim. Biophys. Acta 128:510-521 https://doi.org/10.1016/0926-6593(66)90012-9
- Das, S. K. and A. K. Mishra. 1996. Transposon mutagenesis affecting thiosulfate oxidation in Bosea thiooxidans, a new chemolithotrophic bacterium. J. Bacteriol. 178: 3628-3633 https://doi.org/10.1128/jb.178.12.3628-3633.1996
- de Zwart, J. M. M., P. N. Nelisse, and J. G. Kuenen. 1996. Isolation and characterization of Methylophaga sulfidovorans sp. nov., an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol. Ecol. 20: 261-270 https://doi.org/10.1111/j.1574-6941.1996.tb00324.x
- Frank, J. and J. A. Duine. 1990. Methanol dehydrogenase from Hyphomicrobium X. Methods Enzymol. 188: 202-209 https://doi.org/10.1016/0076-6879(90)88034-8
- Friedrich, C. G., D. Rother, F. Bardischewsky, A. Quentmeier, and J. Fischer. 2001. Oxidation of inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl. Environ. Microbiol. 67: 2873-2882 https://doi.org/10.1128/AEM.67.7.2873-2882.2001
- Fujimura, Y. K. and H. Kuraishi. 1980. Characterization of Thiobacillus novellus and its thiosulfate oxidation. J. Gen. Appl. Microbiol. 26: 357-367 https://doi.org/10.2323/jgam.26.357
- Ghosh, W. and P. Roy. 2007. Chemolithoautotrophic oxidation of thiosulfate, tetrathionate and thiocyanate by a novel rhizobacterium belonging to the genus Paracoccus. FEMS Microbiol. Lett. 270: 124-131 https://doi.org/10.1111/j.1574-6968.2007.00670.x
- Jung, S. J., K. H. Jang, E. H. Shin, S. K. Park, and C. H. Park. 2005. Characteristics of sulfur oxidation by a newly isolated Burkholderia spp. J. Microbiol. Biotechnol. 15: 716-721
- Kelly, D. P. and A. P. Wood. 1994. Synthesis and determination of thiosulfate and polythionates. Methods Enzymol. 243: 475-501 https://doi.org/10.1016/0076-6879(94)43037-3
- Kelly, D. P., J. K. Shergill, W. P. Lu, and A. P. Wood. 1997. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71: 95-107 https://doi.org/10.1023/A:1000135707181
-
Kolmert, A., P. Wikstr
$\ddot{o}$ m, and K. B. Hallberg. 2000. A fast and simple turbidometric method for the determination of sulfate-reducing bacterial cultures. J. Microbiol. Methods 41:179-184 https://doi.org/10.1016/S0167-7012(00)00154-8 - Lahiri, C., S. Mandal, W. Ghosh, B. Dam, and P. Roy. 2006. A novel gene cluster soxSRT is essential for the chemolithotrophic oxidation of thiosulfate and tetrathionate by Pseudaminobacter salicylatoxidans KCT001. Curr. Microbiol. 52: 267-273 https://doi.org/10.1007/s00284-005-0176-x
- Lowry, O. H., A. Rosebrough, A. L. Farr, and R. J. Randal. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275
- Madhaiyan, M., B. Y. Kim, S. Poonguzhali, S. W. Kwon, M. H. Song, J. H. Ryu, S. J. Go, B. S. Koo, and T. M. Sa. 2007. Methylobacterium oryzae sp. nov., a novel aerobic pinkpigmented, facultatively methylotrophic, 1-aminocyclopropane- 1-carboxylate deaminase-producing bacterium isolated from rice. Int. J. Syst. Evol. Microbiol. 57: 326-331 https://doi.org/10.1099/ijs.0.64603-0
- Madhaiyan, M., S. Poonguzhali, S. W. Kwon, M. H. Song, and T. M. Sa. 2008. Molecular characterization of Burkholderia strains isolated from rice cultivars (Oryza sativa L.) for species identification and phylogenetic grouping. J. Microbiol. Biotechnol. 18: 1005-1010
- Matin, A. 1978. Organic nutrition of chemolithotrophic bacteria. Annu. Rev. Microbiol. 32: 433-468 https://doi.org/10.1146/annurev.mi.32.100178.002245
- Meyer, B., J. F. Imhoff, and J. Kuever. 2007. Molecular analysis of the distribution and phylogeny of the soxB among sulfuroxidizing bacteria-evolution of the Sox sulfur oxidation enzyme system. Environ. Microbiol. 9: 2957-2977 https://doi.org/10.1111/j.1462-2920.2007.01407.x
- Padden, A. N., D. P. Kelly, and A. P. Wood. 1998. Chemolithoautotrophy and mixotrophy in the thiophene-2-carboxylic acid-utilizing Xanthobacter tagetidis. Arch. Microbiol. 169: 249-256 https://doi.org/10.1007/s002030050568
- Perez, R. and A. Matin. 1980. Growth of Thiobacillus novellus on mixed substrates (mixotrophic growth). J. Bacteriol. 142: 633-638
- Petri, R., L. Podgorsek, and J. F. Imhoff. 2001. Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol. Lett. 197: 171-178 https://doi.org/10.1111/j.1574-6968.2001.tb10600.x
- Poonguzhali, S., M. Madhaiyan, and T. M. Sa. 2007. Production of acyl homoserine lactone quorum-sensing signals is wide-spread in Gram-negative Methylobacterium. J. Microbiol. Biotechnol. 17: 226-223
- Singleton, D. R. and D. Smith. 1988. Improved assay for rhodanese in Thiobacillus spp. Appl. Environ. Microbiol. 54:2866-2867
- Sorbo, B. 1957. A colorimetric method for the determination of thiosulfate. Biochim. Biophys. Acta 23: 412-416 https://doi.org/10.1016/0006-3002(57)90346-3
- Sorokin, D. Y., T. P. Tourova, E. M. Spiridonova, F. A. Rainey, and G. Muyzer. 2005. Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. Int. J. Syst. Evol. Microbiol. 55: 1069-1075 https://doi.org/10.1099/ijs.0.63415-0
- Trudinger, P. A. 1961. Thiosulfate oxidation and cytochromes in Thiobacillus X2 thiosulfate oxidizing enzyme. Biochem. J. 78: 680-686 https://doi.org/10.1042/bj0780680
- Truper, H. G. and H. G. Schlegel. 1964. Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30: 225-238 https://doi.org/10.1007/BF02046728
- Wodara, C., F. Bardischewsky, and C. G. Friedrich. 1997. Cloning and characterization of sulfite dehydrogenase, two ctype cytochromes, and a flavoprotein of Paracoccus denitrificansGB-17: Essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation. J. Bacteriol. 179: 5014-5023 https://doi.org/10.1128/jb.179.16.5014-5023.1997
Cited by
- Characterization of Plant Growth-Promoting Traits of Free-Living Diazotrophic Bacteria and Their Inoculation Effects on Growth and Nitrogen Uptake of Crop Plants vol.19, pp.10, 2009, https://doi.org/10.4014/jmb.0903.03028
- Diversity of Sulfur-Oxidizing Bacteria in Greenwater System of Coastal Aquaculture vol.162, pp.5, 2009, https://doi.org/10.1007/s12010-009-8886-3
- Facultative methylotrophs from the human oral cavity and methylotrophy in strains of Gordonia, Leifsonia, and Microbacterium vol.193, pp.6, 2009, https://doi.org/10.1007/s00203-011-0689-6
- Co-Consumption of Methanol and Succinate by Methylobacterium extorquens AM1 vol.7, pp.11, 2009, https://doi.org/10.1371/journal.pone.0048271
- Nitrogen‐fixing bacteria with multiple plant growth‐promoting activities enhance growth of tomato and red pepper vol.53, pp.12, 2013, https://doi.org/10.1002/jobm.201200141
- Aggregation of selected plant growth promoting Methylobacterium strains: role of cell surface components and hydrophobicity vol.195, pp.3, 2009, https://doi.org/10.1007/s00203-013-0866-x
- Genome Information of Methylobacterium oryzae , a Plant-Probiotic Methylotroph in the Phyllosphere vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0106704
- Diversity of culturable methylotrophic bacteria in different genotypes of groundnut and their potential for plant growth promotion vol.8, pp.6, 2018, https://doi.org/10.1007/s13205-018-1291-2
- Microbiome Community Structure and Functional Gene Partitioning in Different Micro-Niches Within a Sporocarp-Forming Fungus vol.12, pp.None, 2009, https://doi.org/10.3389/fmicb.2021.629352