DOI QR코드

DOI QR Code

Systemic Analysis of a Novel Coxsackievirus Gene Delivery System in a Mouse Model

  • Kim, Yeon-Jung (Department of Biotechnology, The Catholic University of Korea) ;
  • Yun, Soo-Hyeon (Department of Internal Medicine, Sungkyunkwan University, School of Medicine) ;
  • Lim, Byung-Kwan (Department of Internal Medicine, Sungkyunkwan University, School of Medicine) ;
  • Park, Ki-Bum (Department of Biotechnology, The Catholic University of Korea) ;
  • Na, Ha-Na (Department of Biotechnology, The Catholic University of Korea) ;
  • Jeong, Soo-Young (Department of Biotechnology, The Catholic University of Korea) ;
  • Kim, Dae-Sun (Department of Biotechnology, The Catholic University of Korea) ;
  • Cho, Young-Joo (Department of Biotechnology, The Catholic University of Korea) ;
  • Jeon, Eun-Seok (Department of Internal Medicine, Sungkyunkwan University, School of Medicine) ;
  • Nam, Jae-Hwan (Department of Biotechnology, The Catholic University of Korea)
  • Received : 2008.03.29
  • Accepted : 2008.07.08
  • Published : 2009.03.31

Abstract

In order to systemically investigate the possibility of using coxsackievirus B3 (CVB3) to deliver foreign genes in vivo, a recombinant strain of CVB3 encoding the renilla gene (CVB3-renilla) was constructed. The recombinant CVB3 resulted in extensive and transient expression of the renilla protein within mouse organs, especially the pancreas. The level of expression was generally dependent upon the viral titer present. Moreover, the CVB3-renilla strain was completely attenuated. Interestingly, the recombinant CVB3 vector was expressed much more strongly in mouse organs than was a comparable adenoviral vector. The CVB3-renilla strain did not express the renilla gene in mice with pre-existing coxsackievirus-specific neutralizing antibodies, but direct organ-specific administration of the virus during open-peritoneum surgery was able to circumvent this immunity. This coxsackievirus vector may represent a useful means for delivering and expressing foreign genes in mouse models in an acute and extensive fashion.

Keywords

References

  1. Anversa, P., J. Kajstura, A. Leri, and R. Bolli. 2006. Life and death of cardiac stem cells: A paradigm shift in cardiac biology. Circulation 113: 1451-1463 https://doi.org/10.1161/CIRCULATIONAHA.105.595181
  2. Chapman, N. M., K. S. Kim, S. Tracy, J. Jackson, K. H$\ddot{o}$fling, J. S. Leser, J. Malone, and P. Kolbeck. 2000. Coxsackievirus expression of the murine secretory protein interleukin-4 induces increased synthesis of immunoglobulin G1 in mice. J. Virol. 74: 7952-7962 https://doi.org/10.1128/JVI.74.17.7952-7962.2000
  3. Douglss, J. T. 2007. Adenoviral vectors for gene therapy. Mol. Biotechnol. 36: 71-80 https://doi.org/10.1007/s12033-007-0021-5
  4. Esfandiarei, M. and B. M. McManus. 2007. Molecular biology and pathogenesis of viral myocarditis. Annu. Rev. Pathol. 3: 127-155 https://doi.org/10.1146/annurev.pathmechdis.3.121806.151534
  5. Halim, S. S., D. N. Collins, and A. I. Ramsingh. 2000. A therapeutic HIV vaccine using coxsackie-HIV recombinants: A possible new strategy. AIDS Res. Hum. Retroviruses 16: 1551-1558 https://doi.org/10.1089/088922200750006074
  6. Halim, S. S., S. E. Ostrowski, W. T. Lee, and A. I. Ramsingh. 2000. Immunogenicity of a foreign peptide expressed within a capsid protein of an attenuated coxsackievirus. Vaccine 19: 958-965 https://doi.org/10.1016/S0264-410X(00)00214-0
  7. Henke, A., N. Jarasch, U. Martin, J. Wegert, A. Wildner, R. Zell, and P. Wutzler. 2008. Recombinant coxsackievirus vectors for prevention and therapy of virus-induced heart disease. Int. J. Med. Microbiol. 298: 127-134 https://doi.org/10.1016/j.ijmm.2007.08.010
  8. Henke, A., R. Zell, G. Ehrlich, and A. Stelzner. 2001. Expression of immunoregulatory cytokines by recombinant coxsackievirus B3 variants confers protection against virus-caused myocarditis. J. Virol. 75: 8187-8194 https://doi.org/10.1128/JVI.75.17.8187-8194.2001
  9. H$\ddot{o}$fling, K., S. Tracy, N. Chapman, K. S. Kim, and J. Smith Leser. 2000. Expression of an antigenic adenovirus epitope in a group B coxsackievirus. J. Virol. 74: 4570-4578 https://doi.org/10.1128/JVI.74.10.4570-4578.2000
  10. Kawai, C. 1999. From myocarditis to cardiomyopathy: Mechanisms of inflammation and cell death: Learning from the past for the future. Circulation 99: 1091-1100
  11. Kim, K. S., G$\ddot{u}$nter Hufnagel, N. M. Chapman, and S. Tracy. 2001. The group B coxsackieviruses and myocarditis. Rev. Med. Virol. 11: 355-368 https://doi.org/10.1002/rmv.326
  12. Knowlton, K. U., E. S. Jeon, N. Berkley, R. Wessely, and S. Huber. 1996. A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of coxsackievirus B3. J. Virol. 70: 7811-7818
  13. Kreppel, F. and S. Kochanek. 2008. Modification of adenovirus gene transfer vectors with synthetic polymers: A scientific review and technical guide. Mol. Ther. 16: 16-29 https://doi.org/10.1038/sj.mt.6300321
  14. Lim, B. K., J. O. Shin, S. C. Lee, D. K. Kim, D. J. Choi, S. C. Choe, K. U. Knowlton, and E. S. Jeon. 2005. Long-term cardiac gene expression using a coxsackieviral vector. J. Mol. Cell. Cardiol. 38: 745-751 https://doi.org/10.1016/j.yjmcc.2005.02.018
  15. Maisch, B., A. D. Ristiæ, G. Hufnagel, and S. Pankuweit. 2002. Pathophysiology of viral myocarditis: The role of humoral immune response. Cardiovasc. Pathol. 11: 112-122 https://doi.org/10.1016/S1054-8807(01)00113-2
  16. Mukai, E., S. Fujimoto, F. Sakurai, K. Kawabata, M. Yamashita, N. Inagaki, and H. Mizuguchi. 2007. Efficient gene transfer into murine pancreatic islets using adenovirus vectors. J. Control. Release 119: 136-141 https://doi.org/10.1016/j.jconrel.2007.01.012
  17. Slifka, M. K., R. Pagarigan, I. Mena, R. Feuer, and J. L. Whitton. 2001. Using recombinant coxsackievirus B3 to evaluate the induction and protective efficacy of CD8+ T cells during picornavirus infection. J. Virol. 75: 2377-2387 https://doi.org/10.1128/JVI.75.5.2377-2387.2001
  18. Tam, P. E. 2006. Coxsackievirus myocarditis: Interplay between virus and host in the pathogenesis of heart disease. Viral Immunol. 19: 133-146 https://doi.org/10.1089/vim.2006.19.133
  19. Van den Haute, C., K. Eggermont, B. Nuttin, Z. Debyser, and V. Baekelandt. 2003. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in mouse brain. Hum. Gene Ther. 14: 1799-1807 https://doi.org/10.1089/104303403322611809

Cited by

  1. Enterovirus infections of the central nervous system vol.411, pp.2, 2011, https://doi.org/10.1016/j.virol.2010.12.014
  2. Development of a Gene Therapy Method for Cervical Cancer Using Attenuated Coxsackievirus B3 as a Vector System vol.41, pp.2, 2009, https://doi.org/10.4167/jbv.2011.41.2.123
  3. A mechanism of immunoreceptor tyrosine-based activation motif (ITAM)-like sequences in the capsid protein VP2 in viral growth and pathogenesis of Coxsackievirus B3 vol.44, pp.2, 2009, https://doi.org/10.1007/s11262-011-0681-x
  4. Coxsackievirus B3 used as a gene therapy vector to express functional FGF2 vol.19, pp.12, 2012, https://doi.org/10.1038/gt.2011.201
  5. RNA Viruses as Tools in Gene Therapy and Vaccine Development vol.10, pp.3, 2019, https://doi.org/10.3390/genes10030189