DOI QR코드

DOI QR Code

Cloning, Sequencing, and Expression of the Gene Encoding a Multidomain Endo-$\beta$-1,4-Xylanase from Paenibacillus curdlanolyticus B-6, and Characterization of the Recombinant Enzyme

  • Waeonukul, Rattiya (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Pason, Patthra (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Kyu, Khin Lay (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi) ;
  • Sakka, Kazuo (Graduate School of Bioresources, Mie University) ;
  • Kosug, Akihiko (Japan International Research Center for Agricultural Sciences) ;
  • Mori, Yutaka (Japan International Research Center for Agricultural Sciences) ;
  • Ratanakhanokchai, Khanok (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
  • Received : 2008.04.28
  • Accepted : 2008.07.08
  • Published : 2009.03.31

Abstract

The nucleotide sequence of the Paenibacillus curdlanolyticus B-6 xyn10A gene, encoding a xylanase Xyn10A, consists of 3,828 nucleotides encoding a protein of 1,276 amino acids with a predicted molecular mass of 142,726 Da. Sequence analysis indicated that Xyn10A is a multidomain enzyme comprising nine domains in the following order: three family 22 carbohydrate-binding modules (CBMs), a family 10 catalytic domain of glycosyl hydrolases (xylanase), a family 9 CBM, a glycine-rich region, and three surface layer homology (SLH) domains. Xyn10A was purified from a recombinant Escherichia coli by a single step of affinity purification on cellulose. It could effectively hydrolyze agricultural wastes and pure insoluble xylans, especially low substituted insoluble xylan. The hydrolysis products were a series of short-chain xylooligosaccharides, indicating that the purified enzyme was an endo-$\beta$-1,4-xylanase. Xyn10A bound to various insoluble polysaccharides including Avicel, $\alpha$-cellulose, insoluble birchwood and oat spelt xylans, chitin, and starches, and the cell wall fragments of P. curdlanolyticus B-6, indicating that both the CBM and the SLH domains are fully functioning in the Xyn10A. Removal of the CBMs from Xyn10A strongly reduced the ability of plant cell wall hydrolysis. These results suggested that the CBMs of Xyn10A play an important role in the hydrolysis of plant cell walls.

Keywords

References

  1. Adelsberger, H., C. Hertel, E. Glawischnig, V. V. Zverlov, and W. H. Schwarz. 2004. Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: Reconstitution of the in vivo system from recombinant enzymes. Microbiology 150: 2257-2266 https://doi.org/10.1099/mic.0.27066-0
  2. Ali, M. K., M. Fukumura, K. Sakano, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 1999. Cloning, sequencing, and expression of the gene encoding the Clostridium stercorarium xylanase C in Escherichia coli. Biosci. Biotechnol. Biochem. 63: 1596-1604 https://doi.org/10.1271/bbb.63.1596
  3. Ali, M. K., T. Kimura, K. Sakka, and K. Ohmiya. 2001. The multidomain xylanase Xyn10B as a cellulose-binding protein in Clostridium stercorarium. FEMS Microbiol. Lett. 198: 79-83 https://doi.org/10.1111/j.1574-6968.2001.tb10622.x
  4. Ali, M. K., H. Hayashi, S. Karita, M. Goto, T. Kimura, K. Sakka, and K. Ohmiya. 2001. Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci. Biotechnol. Biochem. 65: 41-47 https://doi.org/10.1271/bbb.65.41
  5. Araki, R., M. K. Ali, M. Sakka, T. Kimura, K. Sakka, and K. Ohmiya. 2004. Essential role of the family-22 carbohydratebinding modules for β-1,3-1,4-glucanase activity of Clostridium stercorarium Xyn10B. FEBS Lett. 561: 155-158 https://doi.org/10.1016/S0014-5793(04)00160-7
  6. Black, G. W., J. E. Rixon, J. H. Clarke, G. P. Hazlewood, M. K. Theodorou, P. Morris, and H. J. Gilbert. 1996. Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Biochem. J. 319: 515-520 https://doi.org/10.1042/bj3190515
  7. Boraston, A. B., A. L. Creagh, M. M. Alam, J. M. Kormos, P. Tomme, C. A. Haynes, R. A. J. Warren, and D. G. Kilburn. 2001. Binding specificity and thermodynamics of a family 9 carbohydratebinding module from Thermotoga maritima xylanase 10A Biochemistry 40: 6240-6247 https://doi.org/10.1021/bi0101695
  8. Charnock, S. J., D. N. Bolam, J. P. Turkenburg, H. J. Gilbert, L. M. A. Ferreira, G. J. Davies, and C. M. A. Fontes. 2000. The X6 "thermostabilizing” domains of xylanases are carbohydratebinding modules: Structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry 39: 5013-5021 https://doi.org/10.1021/bi992821q
  9. Devillard, E., C. Bera-Maillet, H. J. Flint, K. P. Scott, C. J. Newbold, R. J. Wallace, J. P. Jouany, and E. Forano. 2003. Characterization of XYN10B, a modular xylanase from the ruminal protozoan Polyplastron multivesiculatum, with a family 22 carbohydratebinding module that binds to cellulose. Biochem. J. 373: 495-503 https://doi.org/10.1042/BJ20021784
  10. Feng, J. X., S. Karita, E. Fujino, T. Fujino, T. Kimura, K. Sakka, and K. Ohmiya. 2000. Cloning, sequencing, and expression of the gene encoding a cell-bound multi-domain xylanase from Clostridium josui, and characterization of the translated product. Biosci. Biotechnol. Biochem. 64: 2614-2624 https://doi.org/10.1271/bbb.64.2614
  11. Gilbert, H. J. and G. P. Hazlewood. 1993. Bacterial cellulases and xylanases. J. Gen. Microbiol. 139: 187-194 https://doi.org/10.1099/00221287-139-2-187
  12. Gill, J., J. E. Rixon, D. N. Bolam, S. McQueen-Mason, P. J. Simpson, M. P. Williamson, G. P. Hazlewood, and H. J. Gilbert. 1999. The type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism. Biochem. J. 342:473-480 https://doi.org/10.1042/0264-6021:3420473
  13. Henrissat, B. and A. Bairoch. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316: 695-696 https://doi.org/10.1042/bj3160695
  14. Henrissat, B. and P. Coutinho. [Online] Glycosyl hydrolase families. Architecture et Fonction des Macromol$\acute{e}$ules Biologiques, CNRS, Marseille, France. http://afmb.cnrs-mrs.fr/~pedro/CAZY/ghf.html
  15. Heo, S., J. Kwak, H.-W. Oh, D.-S. Park, K. S. Bae, D. H. Shin, and H.-Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759
  16. Irwin, D., E. D. Jung, and D. B. Wilson. 1994. Characterization and sequence of a Thermomonospora fusca xylanase. Appl. Environ. Microbiol. 60: 763-770
  17. Ito, Y., T. Tomita, N. Roy, A. Nakano, N. Sugawara-Tomita, S. Watanabe, N. Okai, N. Abe, and Y. Kamio. 2003. Cloning, expression, and cell surface localization of Paenibacillus sp. strain W-61 xylanase 5, a multidomain xylanase. Appl. Environ. Microbiol. 69: 6969-6978 https://doi.org/10.1128/AEM.69.12.6969-6978.2003
  18. Kosugi, A., K. Murashima, Y. Tamaru, and R. H. Doi. 2002. Cellsurface anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngE. J. Bacteriol. 184:884-888 https://doi.org/10.1128/jb.184.4.884-888.2002
  19. Kubata, B. K., T. Suzuki, H. Horitsu, K. Kawai, and K. Takamizawa. 1994. Purification and characterization of Aeromonas caviae ME-1 xylanase V, which produces exclusively xylobiose from xylan. Appl. Environ. Microbiol. 60: 531-535
  20. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  21. Lee, Y.-E., S. E. Lowe, and J. G. Zeikus. 1993. Gene cloning, sequencing, and biochemical characterization of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. Appl. Environ. Microbiol. 59: 3134-3137
  22. Lee, Y.-E., S. E. Lowe, B. Henrissat, and J. G. Zeikus. 1993. Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6ARI. J. Bacteriol. 175: 5890-5898 https://doi.org/10.1128/jb.175.18.5890-5898.1993
  23. Lee, H.-J., D.-J. Shin, N. C. Cho, H. O. Kim, S. Y. Shin, S. Y. Im, H. B. Lee, S. B. Chun, and S. Bai. 2000. Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol. Lett. 22: 387-392 https://doi.org/10.1023/A:1005676702533
  24. Lee, J.-H. and S. H. Choi. 2006. Xylanase production by Bacillus sp. A-6 isolated from rice bran. J. Microbiol. Biotechnol. 16:1856-1861
  25. Lee, T. H., P. O. Lim, and Y.-E. Lee. 2007. Cloning, characterization, and expression of xylanase A gene from Paenibacillus sp. DG-22 in Escherichia coli. J. Microbiol. Biotechnol. 17: 29-36
  26. Liu, S.-Y., F. C. Gherardini, M. Matuschek, H. Bahl, and J. Wiegel. 1996. Cloning, sequencing, and expression of the gene encoding a large S-layer-associated endoxylanase from Thermoanaerobacterium sp. strain JW/SL-YS 485 in Escherichia coli. J. Bacteriol. 178: 1539-1547 https://doi.org/10.1128/jb.178.6.1539-1547.1996
  27. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
  28. Lupas, A., H. Enhgelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister. 1994. Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J. Bacteriol. 176: 1224-1233 https://doi.org/10.1128/jb.176.5.1224-1233.1994
  29. Matuschek, M., K. Sahm, A. Zibat, and H. Bahl. 1996. Characterization of genes from Thermoanaerobacterium thermosulfurigenes EM1 that encode two glycosyl hydrolases with conserved S-layer-like domains. Mol. Gen. Genet. 252:493-496
  30. Meissner, K., D. Wassenberg, and W. Liebl. 2000. The thermostabilizing domain of the modular xylanase Xyn10A of Thermotoga maritima represents a novel type of binding domain with affinity for soluble xylan and mixed-linkage $\beta$-1,3/$\beta$-1,4-glucan. Mol. Microbiol. 36: 898-912 https://doi.org/10.1046/j.1365-2958.2000.01909.x
  31. Mesnage, St$\acute{e}$phane., T. Fontaine, T$\hat{a}$m Mignot, M. Delepierre, Mich$\grave{e}$le Mock, and Agn$\grave{e}$s. Fouet. 2000. Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J. 19: 4473-4484 https://doi.org/10.1093/emboj/19.17.4473
  32. Millward-Sadler, S. J., D. M. Poole, B. Henrissat, G. P. Hazlewood, J. H. Clarke, and H. J. Gilbert. 1994. Evidence for a general role for high-affinity noncatalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol. Microbiol. 11: 375-382 https://doi.org/10.1111/j.1365-2958.1994.tb00317.x
  33. Morris, D. D., M. D. Gibbs, M. Ford, J. Thomas, and P. L. Bergquist. 1999. Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1. Extremophiles 3: 103-111 https://doi.org/10.1007/s007920050105
  34. Moure, Andr$\acute{a}$s., P. Gull$\acute{o}$n, H. Dom$\acute{i}$nguez, and J. C. Paraj$\acute{o}$. 2006. Advances in the manufacture, purification and applications of xylooligosaccharides as food additives and nutraceuticals. Proc. Biochem. 41: 1913-1923 https://doi.org/10.1016/j.procbio.2006.05.011
  35. Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380
  36. Ohmiya, K., K. Sakka, S. Karita, and T. Kimura. 1997. Structure of cellulases and their applications. Biotechnol. Genet. Eng. Rev. 14:365-414 https://doi.org/10.1080/02648725.1997.10647949
  37. Okazaki, F., Y. Tamaru, S. Hashikawa, Y.-T. Li, and T. Araki. 2002. Novel carbohydrate-binding module of $\beta$-1,3-xylanase from a marine bacterium, Alcaligenes sp. strain XY-234. J. Bacteriol. 184: 2399-2403 https://doi.org/10.1128/JB.184.9.2399-2403.2002
  38. Pason, P., G. H. Chon, K. Ratanakhanokchai, K. L. Kyu, O.-H. Jhee, J. Kang, et al. 2006. Selection of multienzyme complexproducing bacteria under aerobic cultivation. J. Microbiol. Biotechnol. 16: 1269-1275
  39. Pason, P., K. L. Kyu, and K. Ratanakhanokchai. 2006. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol. 72: 2483-2490 https://doi.org/10.1128/AEM.72.4.2483-2490.2006
  40. Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697
  41. St. John, F. J., J. D. Rice, and J. F. Preston. 2006. Paenibacillus sp. strain JDR-2 and XynA1: A novel system for methylglucuronoxylan utilization. Appl. Environ. Microbiol. 72: 1496-1506 https://doi.org/10.1128/AEM.72.2.1496-1506.2006
  42. Sun, J. L., K. Sakka, S. Karita, T. Kimura, and K. Ohmiya. 1998. Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBDs to xylan hydrolysis. J. Ferment. Bioeng. 85: 63-68 https://doi.org/10.1016/S0922-338X(97)80355-8
  43. Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67 https://doi.org/10.3109/07388559709146606
  44. Sunna, A., M. D. Gibbs, and P. L. Bergquist. 2000. A novel thermostable multidomain β-1,4-xylanase from Caldibacillus cellulovorans and effect of its xylan-binding domain on enzyme activity. Microbiology 146: 2947-2955 https://doi.org/10.1099/00221287-146-11-2947
  45. Tsujibo, H., T. Ohtsuki, T. Iio, I. Yamazaki, K. Miyamoto, M. Sugiyama, and Y. Inamori. 1997. Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from Streptomyces thermoviolaceus OPC-520. Appl. Environ. Microbiol. 63: 661-664
  46. Whistler, R. L. and E. L. Richard. 1970. Hemicellulose in the carbohydrates, pp. 447-469. In W. Pigman and D. Horton (eds.), The Carbohydrates: Chemistry and Biochemistry, 2nd Ed. Academic Press, New York, NY
  47. Zemnukhova, L. A., S. V. Tomshich, V. A. Mamontova, N. A. Komandrova, G. A. Fedorishcheva, and V. I. Sergienko. 2004. Composition and properties of polysaccharides from rice husk. Russ. J. Appl. Chem. 77: 1883-1887 https://doi.org/10.1007/s11167-005-0181-7

Cited by

  1. Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6 vol.85, pp.3, 2010, https://doi.org/10.1007/s00253-009-2117-2
  2. Carbohydrate-binding domains: multiplicity of biological roles vol.85, pp.5, 2009, https://doi.org/10.1007/s00253-009-2331-y
  3. A Cellulolytic and Xylanolytic Enzyme Complex from an Alkalothermoanaerobacterium, Tepidimicrobium xylanilyticum BT14 vol.20, pp.5, 2010, https://doi.org/10.4014/jmb.0911.11025
  4. Characterization of a Paenibacillus woosongensis ${\beta}$-Xylosidase/${\alpha}$-Arabinofuranosidase Produced by Recombinant Escherichia coli vol.20, pp.12, 2009, https://doi.org/10.4014/jmb.1010.10040
  5. Partial Characterization of α-Galactosidic Activity from the Antarctic Bacterial Isolate, Paenibacillus sp. LX-20 as a Potential Feed Enzyme Source vol.25, pp.6, 2009, https://doi.org/10.5713/ajas.2011.11501
  6. Paenibacillus woosongensis의 Xylanase 유전자 클로닝과 특성분석 vol.48, pp.2, 2009, https://doi.org/10.7845/kjm.2012.48.2.141
  7. Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy vol.58, pp.2, 2013, https://doi.org/10.1007/s12223-012-0184-8
  8. An ${\beta}$-1,4-Xylanase with Exo-Enzyme Activity Produced by Paenibacillus xylanilyticus KJ-03 and Its Cloning and Characterization vol.23, pp.3, 2013, https://doi.org/10.4014/jmb.1212.12017
  9. Molecular and biochemical characterization of a new alkaline active multidomain xylanase from alkaline wastewater sludge vol.29, pp.2, 2009, https://doi.org/10.1007/s11274-012-1186-z
  10. 용인 함박산 토양에서 분리한 Paenibacillus sp. HX-1의 동정과 endo-${\beta}$-1,4-xylanase 생산 증가를 위한 배지최적화 vol.41, pp.3, 2009, https://doi.org/10.4014/kjmb.1304.04001
  11. Cloning and Characterization of a Multidomain GH10 Xylanase from Paenibacillus sp. DG-22 vol.24, pp.11, 2014, https://doi.org/10.4014/jmb.1407.07077
  12. Substitution of the Echistatin Amino Acid Motif RGDD with KGDW Enhances Inhibition of Platelet Aggregation and Thrombogenesis vol.21, pp.4, 2009, https://doi.org/10.1007/s10989-015-9475-7
  13. A Novel Multi-domain High Molecular, Salt-Stable Alkaline Xylanase from Alkalibacterium sp. SL3 vol.7, pp.None, 2009, https://doi.org/10.3389/fmicb.2016.02120
  14. Paenibacillus amylolyticus 유래 xylanase GH10 및 GH30의 xylan 가수분해 특성 vol.52, pp.4, 2009, https://doi.org/10.7845/kjm.2016.6068
  15. Genomic insights from Monoglobus pectinilyticus: a pectin-degrading specialist bacterium in the human colon vol.13, pp.6, 2009, https://doi.org/10.1038/s41396-019-0363-6
  16. Production, characteristics, and biotechnological applications of microbial xylanases vol.103, pp.21, 2019, https://doi.org/10.1007/s00253-019-10108-6
  17. Extremophile – An Adaptive Strategy for Extreme Conditions and Applications vol.21, pp.2, 2009, https://doi.org/10.2174/1389202921666200401105908