DOI QR코드

DOI QR Code

Acinetobacter antiviralis sp. nov., from Tobacco Plant Roots

  • Lee, Jung-Sook (Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Keun-Chul (Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Kwang-Kyu (Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Hwang, In-Cheon (Central Research Institute, Kyung Nong Co. Ltd.) ;
  • Jang, Cheol (Central Research Institute, Kyung Nong Co. Ltd.) ;
  • Kim, Nam-Gyu (Central Research Institute, Kyung Nong Co. Ltd.) ;
  • Yeo, Woon-Hyung (KT&G Central Research Institute) ;
  • Kim, Beom-Seok (College of Life and Environmental Sciences, Korea University) ;
  • Yu, Yong-Man (Department of Applied Biology, Chungnam National University) ;
  • Ahn, Jong-Seog (Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2008.01.29
  • Accepted : 2008.08.03
  • Published : 2009.03.31

Abstract

Acinetobacter strain $KNF2022^T$ was isolated from tobacco plant roots during the screening of antiviral substances having inhibitory effects on Tobacco mosaic virus (TMV) and examined by phenotypic, chemotaxonomic, and genetic characterization. It was a nonmotile, Gram-negative bacterium. This strain contained Q-9 as the main respiratory quinone. The major cellular fatty acids of the isolate were 16:0, 18:1 w9c, and 16:1 w7c/15 iso 2OH. The DNA base composition was 44 mol%. Phylogenetic analysis based on the 16S rRNA sequence revealed that the isolate formed an evolutionary lineage distinct from other Acinetobacter species. Based on the evaluation of morphologic, physiologic, and chemotaxonomic characteristics, DNA-DNA hybridization values, and 16S rRNA sequence comparison, we propose the new species Acinetobacter antiviralis sp. nov., the type strain of which is $KNF2022^T$ (=KCTC $0699BP^T$).

Keywords

References

  1. Bouvet, P. J. M. and P. A. D. Grimont. 1986. Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov., and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int. J. Syst. Bacteriol. 36: 228-240 https://doi.org/10.1099/00207713-36-2-228
  2. Brisou, J. and A. R. Pr$\acute{e}$vot. 1954. $\acute{E}$tudes de syst$\acute{e}$matique bact$\acute{e}$rienne. X. R$\acute{e}$vision des esp$\grave{e}$ces reunites dans le denre Achromobacter. Annales de l'Institut Pasteur (Paris) 86: 722-728
  3. Carr, E. L., P. Kämpfer, B. K. C. Patel, V. Gürtler, and R. J. Seviour. 2003. Seven novel species of Acinetobacter isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 53: 953-963 https://doi.org/10.1099/ijs.0.02486-0
  4. Choi, J. K. and S. Y. Lee. 1995. Introduction to Plant Virology. pp. 240. Kangwon University Press
  5. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791 https://doi.org/10.2307/2408678
  6. Felsenstein, J. 1993. PHYLIP (phylogeny inference package), version 3.5c, Department of Genetics, University of Washington, Seattle, U.S.A
  7. Fukami, J., Y. Uesugi, K. Ishizuka, and C. Tomizawa. 1981. Methods in Pesticide Science. Vol. 2, 430 pp. Soft Science, Inc. Tokyo
  8. Ibrahim, A., P. Gerner-Smidt, and W. Liesack. 1997. Phylogenetic relationship of the twenty-one DNA groups of the genus Acinetobacter as revealed by 16S ribosomal DNA sequence analysis. Int. J. Syst. Evol. Microbiol. 47: 837-841
  9. Jukes, T. H. and C. R. Cantor. 1969. Evolution of protein molecules, pp. 21-132. In H. N. Munro (ed.), Mammalian Protein Metabolism Academic Press, New York
  10. Kim, Y. S., E. I. Hwang, J. H. O, K. S. Kim, M. H. Ryu, and W. H. Yeo. 2004. Inhibitory effects of Acinetobacter sp. KTB3 on infection of Tobacco mosaic virus in tobacco plants. Plant Pathol. J. 20: 293-296 https://doi.org/10.5423/PPJ.2004.20.4.293
  11. Lee, J.-S., M.-C. Jung, W.-S. Kim, K.-C. Lee, H.-J. Kim, C.-S. Park, et al. 1996. Identification of lactic acid bacteria from kimchi by cellular FAMEs analysis. Kor. J. Appl. Microbiol. Biotechnol. 24: 234-241
  12. Marmur, J. 1961. A procedure for the isolation of DNA from microorganisms. J. Mol. Biol. 3: 208-218 https://doi.org/10.1016/S0022-2836(61)80047-8
  13. NCCLS 2003. Performance standards for antimicrobial disk susceptibility tests. In: Approved Standard, 8th Ed., NCCLS document M2-A8 (ISBN 1-56238-485-6) National Committee for Clinical Laboratory Standards, Wayne, PA
  14. Nemec, A., T. De Baere, I. Tjernberg, M. Vaneechoutte, T. J. K. Van Der Reijden, and L. Dijkshoorn. 2001. Acinetobacter ursingii sp. nov., and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Int. J. Syst. Evol. Microbiol. 51: 1891-1899
  15. Nemec, A., L. Dijkshoorn, I. Cleenwerck, T. De Baere, D. Janssens, T. J. K. Van Der Reijden, P. Jezek, and M. Vaneechoutte. 2003. Acinetobacter parvus sp. nov., a smallcolony-forming species isolated from human clinical specimens. Int. J. Syst. Evol. Microbiol. 53: 1563-1567 https://doi.org/10.1099/ijs.0.02631-0
  16. Nnshimura, Y., T. Ino, and H. Iizuka. 1988. Acinetobacter radioresistens sp. nov., isolated from cotton and soil. Int. J. Syst. Bacteriol. 38: 209-211 https://doi.org/10.1099/00207713-38-2-209
  17. Rossello-Mora, R. and R. Amann. 2001. The species concept for prokaryotes. FEMS Microbiol. Rev. 25: 39-67
  18. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  19. Shin, Y. K., J.-S. Lee, C. O. Chun, H.-J. Kim, and Y.-H. Park. 1996. Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T. J. Microbiol. Biotechnol. 6: 68-69
  20. Skerman, V. B. D. 1967. A Guide to the Identification of the Genera of Bacteria, 2nd Ed. Williams and Wilkins, Baltimore
  21. Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849 https://doi.org/10.1099/00207713-44-4-846
  22. Stackebrandt, E., W. Frederikson, G. M. Garrity, P. A. Grimont, P. K$\ddot{a}$mpfer, M. C. Maiden, et al. 2002. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52: 1043-1047 https://doi.org/10.1099/ijs.0.02360-0
  23. Stakebrandt, E. and W. Liesack. 1993. Nucleic acids and classification, pp. 152-189. In M. Goodfellow and A. G. O’Donnell (eds.), Handbook of New Bacterial Systematics. Academic Press, London
  24. Tamaoka, J. and K. Komagata. 1984. Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25: 125-128 https://doi.org/10.1111/j.1574-6968.1984.tb01388.x
  25. Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, et al. 1987. Report of the ad hoc committee on recociliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464 https://doi.org/10.1099/00207713-37-4-463
  26. Yang, P., L. Vauterin, M. Vancaneyt, J. Swings, and K. Kersters. 1993. Application of fatty acid methyl esters for the taxonomic analysis of the genus Xanthomonas. Syst. Appl. Microbiol. 16:47-71
  27. Yumoto, I., K. Yamazaki, T. Sawabe, K. Nakano, K. Kawasaki, Y. Ezura, and H. Shinano. 1998. Bacillus horti sp. nov., a new Gram-negative alkaliphilic Bacillus. Int. J. Syst. Bacteriol. 48:565-571 https://doi.org/10.1099/00207713-48-2-565

Cited by

  1. Persistent Wolbachia and Cultivable Bacteria Infection in the Reproductive and Somatic Tissues of the Mosquito Vector Aedes albopictus vol.4, pp.7, 2009, https://doi.org/10.1371/journal.pone.0006388
  2. Characterization of a Novel Trimethoprim Resistance Gene,dfrA28, in Class 1 Integron of an OligotrophicAcinetobacter johnsoniiStrain, MB52, Isolated from River Mahananda, India vol.16, pp.1, 2009, https://doi.org/10.1089/mdr.2009.0111
  3. Acinetobacter brisouii sp. nov., Isolated from a Wetland in Korea vol.48, pp.1, 2009, https://doi.org/10.1007/s12275-009-0132-8
  4. Wolbachia modulates Chikungunya replication in Aedes albopictus vol.19, pp.9, 2010, https://doi.org/10.1111/j.1365-294x.2010.04606.x
  5. Flavobacterium banpakuense sp. nov., isolated from leaf-and-branch compost vol.61, pp.7, 2011, https://doi.org/10.1099/ijs.0.022467-0
  6. Flavobacterium compostarboris sp. nov., isolated from leaf-and-branch compost, and emended descriptions of Flavobacterium hercynium , Flavobacterium resistens and Flavobacterium johnsoniae vol.62, pp.8, 2009, https://doi.org/10.1099/ijs.0.032920-0
  7. Acinetobacter: A potential reservoir and dispenser for β-lactamases vol.38, pp.1, 2012, https://doi.org/10.3109/1040841x.2011.621064
  8. Reservoirs of Non- baumannii Acinetobacter Species vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.00049
  9. Acinetobacter equi sp. nov., isolated from horse faeces vol.66, pp.2, 2016, https://doi.org/10.1099/ijsem.0.000806
  10. Pseudomonas oleovorans Strain KBPF-004 Culture Supernatants Reduced Seed Transmission of Cucumber green mottle mosaic virus and Pepper mild mottle virus, and Remodeled Aggregation of 126 kDa and Subce vol.33, pp.4, 2009, https://doi.org/10.5423/ppj.oa.03.2017.0047
  11. An Increase of Abundance and Transcriptional Activity for Acinetobacter junii Post Wastewater Treatment vol.10, pp.4, 2009, https://doi.org/10.3390/w10040436
  12. Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis vol.11, pp.1, 2009, https://doi.org/10.1186/s13071-018-2741-8
  13. Purification and Characterization of a Secretory Alkaline Metalloprotease with Highly Potent Antiviral Activity from Serratia marcescens Strain S3 vol.67, pp.11, 2009, https://doi.org/10.1021/acs.jafc.8b06909
  14. The Challenges of Microbial Control of Mosquito-Borne Diseases Due to the Gut Microbiome vol.11, pp.None, 2009, https://doi.org/10.3389/fgene.2020.504354
  15. Comparison of bacterial diversity and abundance between sexes of Leptocybe invasa Fisher & La Salle (Hymenoptera: Eulophidae) from China vol.8, pp.None, 2009, https://doi.org/10.7717/peerj.8411