Increased Production of Amino Acids in an Escherichia coli rpoS Mutant

RpoS 대장균 돌연변이 균주에서 아미노산의 생산 증가

  • Jung, Il-Lae (Department of Radiation Biology, Korea Atomic Energy Research Institute) ;
  • Kim, In-Gyu (Department of Radiation Biology, Korea Atomic Energy Research Institute)
  • 정일래 (한국원자력연구원 방사선생물학연구실) ;
  • 김인규 (한국원자력연구원 방사선생물학연구실)
  • Received : 2009.08.11
  • Accepted : 2009.09.15
  • Published : 2009.09.30

Abstract

An RpoS factor is a transcriptional regulator which participates in numerous biological processes. In this work, we investigated the transcriptional regulation of proBA and proC composing proline biosynthetic pathway in Escherichia coli. While the proBA and proC genes were greatly induced in an exponential growth phase, they were dramatically repressed in a stationary growth phase in the wild type E. coli. Unlike the wild type E. coli, the proBA and proC genes were not repressed even in the stationary growth phase in its isogenic rpoS mutant. These results suggest that the RpoS factor acts as a transcriptional repressor of proBA and proC genes. The production of threonine, methionine, lysine, and arginine in the rpoS mutant were also increased by more than two times compared to its parental wild type, suggesting that the mutant is able to be used as an useful host strain for the amino acid overproduction.

세포정지기 및 스트레스에서 유도되는 RpoS 인자는 다양한 세포반응에 관여하는 유전자의 전사발현에 관여하는 전자조절인자이다. 대장균에서 proline의 생합성에 관여하는 유전자인 proBA와 proC 발현을 세포생장 주기별로 조사해 본 결과, 세포지수기에서는 proBA와 proC 유전자의 발현이 유도되는데 비해, 세포정지기에서는 이 세유전자의 전사발현이 극적으로 저해되었다. 그러나 rpoS 돌연변이를 야생형 대장균에 도입한 결과 proline 생합성에 관여하는 유전자인 proBA와 proC 유전자의 발현이 세포정지기에서 저해되지 않았다. 이러한 결과는 RpoS가 proline 생합성에 관여하는 proBA와 proC 유전자의 전사발현에 음성효과를 미치고 있음을 의미한다. 한편 rpoS 돌연변이 균주에서는 proline 외에도 threonine, methionine, lysine, arginine 등의 아미노산이 야생형 대비 2배 이상 생합성이 증가되었는데, 이는 rpoS 대장균 돌연변이 균주가 아미노산의 대량생산에 이용될 수 있음을 의미한다.

Keywords

References

  1. 임번삼. 2003. 아미노산 생산균주의 개량. KISTI 기술동향 보고서
  2. Becker, G. and R. Hengge-Aronis. 2001. What makes an Escherichia coli promoter sigma(S) dependent? Role of the -13/-14 nucleotide promoter positions and region 2.5 of sigma(S). Mol. Microbiol. 39, 1153-1165 https://doi.org/10.1111/j.1365-2958.2001.02313.x
  3. Bachmann, B.J. 1990. Linkage map of Escherichia coli K-12, 8th ed. Microbiol. Rev. 54, 130-197
  4. Bloom, F., C.J. Smith, J. Jessee, B. Veiileux, and A.H. Deutch. 1983. The use of genetically engineered strains of Escherichia coli for the overproduction of free amino acids: proline as a model system, pp. 383-394. In Advances in Gene Technology, Academic Press, Orlando, Fla., USA
  5. Burgard, A.P., P. Pharkya, and C.D. Maranas. 2003. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647-657 https://doi.org/10.1002/bit.10803
  6. Condamine, H. 1971. Sur la regulation de la production de proline chez E. coli K12. Ann. Inst. Pasteur 120, 126-143
  7. Csonka, L.N. 1981. Proline overproduction results in enhanced osmotolerance in Salmonella typhimurium. Mol. Gen. Genet. 182, 82-86 https://doi.org/10.1007/BF00422771
  8. Fong, S.S., A.P. Burgard, C.D. Herring, E.M. Knight, F.R. Blattner, C.D. Maranas, and B.O. Palsson. 2005. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91, 643-648 https://doi.org/10.1002/bit.20542
  9. Gaudu, P., S. Dubrac, and D. Touati. 2000. Activation of SoxR by overproduction of desulfoferrodoxin: multiple ways to induce the soxRS regulon. J. Bacteriol. 182, 1761-1763 https://doi.org/10.1128/JB.182.6.1761-1763.2000
  10. Hengge-Aronis, R. 1996. Regulation of gene expression during entry into stationary phase, pp. 1497-1512. In Escherichia coli and Salmonella: 2nd ed. ASM Press, Washington, D.C., USA
  11. Hengge-Aronis, R. 2002. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66, 373-395 https://doi.org/10.1128/MMBR.66.3.373-395.2002
  12. Jung, I.L. and I.G. Kim. 2003. Polyamines and glutamate decarboxylase- based acid resistance in Escherichia coli. J. Biol. Chem. 278, 22846-22852 https://doi.org/10.1074/jbc.M212055200
  13. Jung, I.L. and I.G. Kim. 2003. Transcription of ahpC, katG, and katE genes in Escherichia coli is regulated by polyamines: polyamine-deficient mutant sensitive to H2O2-induced oxidative damage. Biochem. Biophys. Res. Commun. 301, 915-922 https://doi.org/10.1016/S0006-291X(03)00064-0
  14. Jung, I.L., S.K. Kim, and I.G. Kim. 2006. The RpoS-mediated regulation of isocitrate dehydrogenase gene expression in Escherichia coli. J. Curr. Microbiol. 52, 21-26 https://doi.org/10.1007/s00284-005-8006-8
  15. Kim, T.Y., H.U. Kim, and S.Y. Lee. 2009. Metabolite-centric approaches for the discovery of antibacterials using genome-scale metabolic networks. Metab. Eng. doi:10.1016/j.ymben.2009. 05.004 [in press]
  16. Lee, K.H., J.H. Park, T.Y. Kim, H.U. Kim, and S.Y. Lee. 2007. Systems metabolic engineering of Escherichia coli for L-threonine production. Mol. Syst. Biol. 3, 1-8 https://doi.org/10.1038/msb4100196
  17. Lee, S.Y., H.U. Kim, J.H. Park, J.M. Park, and T.Y. Kim. 2009. Metabolic engineering of microorganisms: general strategies and drug production. Drug Discov. Today 14, 78-88 https://doi.org/10.1016/j.drudis.2008.08.004
  18. Leuchtenberger, W., K. Huthmacher, and K. Drauz. 2008. Biotechnoligical production of amino acids and derivatived: current status and prospects. Appl. Microbiol. Biotechnol. 69, 1-8 https://doi.org/10.1007/s00253-005-0155-y
  19. Loewen, P.C., B. Hu, J. Strutinsky, and R. Sparling. 1998. Regulation in the rpoS regulon of Escherichia coli. Can. J. Microbiol. 44, 707-717 https://doi.org/10.1139/cjm-44-8-707
  20. Pharkya, P., A.P. Burgard, and C.D. Maranas. 2004. OptStrain: a computational framework for redesign of microbial production systems. Genome Res. 14, 2367-2376 https://doi.org/10.1101/gr.2872004
  21. Sambrook, J. and D.W. Russell. 2001. Molecular cloning: A laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA
  22. Schellhorn, H.E., J.P. Audia, L.I. Wei, and L. Chang. 1998. Identification of conserved, RpoS-dependent stationary-phase genes of Escherichia coli. J. Bacteriol. 180, 6283-6291
  23. Segr, D., D. Vitkup, and G.M. Church. 2002. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112-15117 https://doi.org/10.1073/pnas.232349399
  24. Vogel, H.J. and B.D. Davis. 1952. Glutamic $\gamma$-semialdehyde and $\Delta^1$-pyrroline-5-carboxylic acid, intermediates in the biosynthesis of proline. J. Am. Chem. Soc. 74, 109-102 https://doi.org/10.1021/ja01121a025