Corynebacterium ammoniagenes에서 purF 유전자의 조절 및 이에 특이적인 조절 단백질의 분리

Regulation of Corynebacterium ammoniagenes purF and Isolation of purF-Specific Regulatory Proteins

  • 이석명 (고려대학교 과학기술대학 생명정보공학과) ;
  • 김연희 (세명대학교 한의과대학 한의학과) ;
  • 이흥식 (고려대학교 과학기술대학 생명정보공학과)
  • Lee, Seok-Myung (Department of Biotechnology and Bioinformatics, Korea University) ;
  • Kim, Youn-Hee (Department of Oriental Medicine, Semyung University) ;
  • Lee, Heung-Shick (Department of Biotechnology and Bioinformatics, Korea University)
  • 투고 : 2009.08.17
  • 심사 : 2009.09.21
  • 발행 : 2009.09.30

초록

Corynebacterium ammoniagenes의 purF 유전자의 발현을 purF의 프로모터 추정 부위에 cat 유전자를 융합시킨 transcriptional fusion 플라스미드를 제작하여 분석하였다. 유전자 purF는 adenine과 guanine에 의해 20~30%의 전사 저해효과를 나타내지만, hypoxanthine에는 저해를 받지 않는 것으로 나타났다. 또한 purF의 발현은 대수기중반에 최대에 달한 후 정체기 후반부까지 일정한 것으로 나타났다. 동시에, C. glutamicum에서 사용되는 강력한 프로모터인 $P_{180}$이 Escherichia coli의 $P_{tac}$보다 C. ammoniagenes에서 모든 성장 단계에서 40~50%의 향상된 프로모터 활성을 나타내었고 대수기 후반부에 최고 활성에 달해, C. ammoniagenes의 연구에도 활용 가능함을 확인하였다. DNA-affinity purification에 의해 C. ammoniagenes의 purF 프로모터에 결합하는 단백질로서 C. glutamicum의 Crp-family transcriptional regulator (NCgl0120)와 상동성이 높은 단백질을 검출하였다. 이 단백질은 크기가 40.1 kDa으로서 PAGE에서 관찰된 단백질 크기와 일치하였다. 이에 상응하는 C. ammoniagenes의 단백질은 400개의 아미노산으로 구성되어 있고, 42 kDa의 단백질을 만들며, pI는 4.9일 것으로 추정되었다. 이는 기존에 알려져 있는 E. coli 및 Bacillus subtilis의 PurR과 각각 14.1%, 15.8%의 아미노산 상동성을 보여, PurR과는 다른 종류의 단백질일 것으로 여겨진다.

The expression of Corynebacterium ammoniagenes purF was analyzed by utilizing a plasmid carrying a cat gene fused to the purF promoter region. Adenine and guanine repressed the expression of the purF gene by 20~30% but hypoxanthine did not exert such repressive effect. The expression purF was maximal at the late log phase and remained constant throughout the stationary phase. Promoter $P_{180}$ which was developed in C. glutamicum was also functional in C. ammoniagenes, achieving maximal activity at the late log phase. The promoter outperformed Escherichia coli $P_{tac}$ promoter by 40~50% level. DNA-affinity purification identified a protein which could bind to the promoter region of the purF gene. The protein showed high similarity to the CRP-family transcriptional regulator encoded by NCgl0120 in C. glutamicum. The size of the screened protein agreed with the expected protein size from the ORF NCgl0120. The corresponding gene in C. ammoniagenes encoded a 42 kDa polypeptide composed of 400 amino acids with expected pI of 4.9. The encoded protein showed 14.1% and 15.8% identity with E. coli and Bacillus subtilis PurR, respectively, suggesting that the isolated protein might be a novel type of regulatory protein involved in the regulation of purine metabolism.

키워드

참고문헌

  1. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  2. Chung, S.O., J.H. Lee, S.Y. Lee, and D.S. Lee. 1996. Genomic organization of purK and purE in Brevibacterium ammoniagenes ATCC 6872: purE locus provides a clue for genomic evolution. FEMS Microbiol. Lett. 137, 265-268 https://doi.org/10.1111/j.1574-6968.1996.tb08116.x
  3. Cramer, A., R. Gerstmeir, S. Schaffer, M. Bott, and B.J. Eikmanns. 2006. Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 188, 2554-2567 https://doi.org/10.1128/JB.188.7.2554-2567.2006
  4. Demain, A.L. 2000. Small bugs, big business: the economic power of the microbe. Biotechnol. Adv. 18, 499-514 https://doi.org/10.1016/S0734-9750(00)00049-5
  5. Follettie, M.T., O.P. Peoples, C. Agoropoulou, and A.J. Sinskey. 1993. Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon. J. Bacteriol. 175, 4096-4103 https://doi.org/10.1128/jb.175.13.4096-4103.1993
  6. Gerstmeir, R., A. Cramer, P. Dangel, S. Schaffer, and B.J. Eikmanns. 2004. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 186, 2798-2809 https://doi.org/10.1128/JB.186.9.2798-2809.2004
  7. Grant, S.G., J. Jessee, F.R. Bloom, and D. Hanahan. 1990. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc. Natl. Acad. Sci. USA 87, 4645-4649 https://doi.org/10.1073/pnas.87.12.4645
  8. Han, J., S.O. Chung, J. Lee, and S. Byun. 1997. $6^{\prime}$-Mercaptoguanision-resistance is related with purF gene encoding $5^{\prime}$-phosphoribosyl-$1^{\prime}$-pyrophosphate amidotransferase in inosine-$5^{\prime}$-monophosphate overproducint Brevibacterium ammoniagenes. Biotechnol. Lett. 19, 79-83 https://doi.org/10.1023/A:1018327406642
  9. Han, R.N., I.H. Cho, S.O. Chung, J.K. Han, J.H. Lee, S.K. Kim, and K.Y. Choi. 2004. Identification of potential Corynebacterium ammoniagenes purine gene regulators using the pur-lacZ reporter in Escherichia coli. J. Microbiol. Biotechnol. 14, 1249-1255
  10. Jungwirth, B., D. Emer, I. Brune, N. Hansmeier, A. Puhler, B.J. Eikmanns, and A. Tauch. 2008. Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR. FEMS Microbiol. Lett. 281, 190-197 https://doi.org/10.1111/j.1574-6968.2008.01098.x
  11. Laemmli, U.K. 1976. SDS-PAGE to evaluate extent of hydrolysis, of proteins. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  12. Lee, S.M., B.J. Hwang, Y. Kim, and H.S. Lee. 2009. The cmaR gene of Corynebacterium ammoniagenes performs a novel regulatory role in the metabolism of sulfur-containing amino acids. Microbiology 155, 1878-1889 https://doi.org/10.1099/mic.0.024976-0
  13. Liebl, W. 2006. "Corynebacterium -Nonmedical" in The prokaryotes : a handbook on the biology of bacteria, 3rd ed. Springer, New York, N.Y., USA.
  14. MacNeil, D.J., J.L. Occi, K.M. Gewain, T. MacNeil, P.H. Gibbons, C.L. Ruby, and S.J. Danis. 1992. Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115, 119-125 https://doi.org/10.1016/0378-1119(92)90549-5
  15. Neidhardt, F.C. and R. Curtiss. 1996. Escherichia coli and Salmonella : cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C., USA.
  16. Park, S.D., S.N. Lee, I.H. Park, J.S. Choi, W.K. Jeong, Y.H. Kim, and H.S. Lee. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J. Microbiol. Biotechnol. 14, 789-795
  17. Rolfes, R.J. and H. Zalkin. 1988. Escherichia coli gene purR encoding a repressor protein for purine nucleotide synthesis. Clon- ing, nucleotide sequence, and interaction with the purF operator. J. Biol. Chem. 263, 19653-19661
  18. Sambrook, J. and D.W. Russell. 2001. Molecular cloning : a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA
  19. Schumacher, M.A., A. Glasfeld, H. Zalkin, and R.G. Brennan. 1997. The X-ray structure of the PurR-guanine-purF operator complex reveals the contributions of complementary electrostatic surfaces and a water-mediated hydrogen bond to corepressor specificity and binding affinity. J. Biol. Chem. 272, 22648-22653 https://doi.org/10.1074/jbc.272.36.22648
  20. Shaw, W.V. 1975. Chloramphenicol acetyltransferase from chloram phenicol-resistant bacteria. Methods Enzymol. 43, 737-755 https://doi.org/10.1016/0076-6879(75)43141-X
  21. Simpson, R.J. 2003. Proteins and proteomics: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA
  22. Weng, M., P.L. Nagy, and H. Zalkin. 1995. Identification of the Bacillus subtilis pur operon repressor. Proc. Natl. Acad. Sci. USA 92, 7455-7459 https://doi.org/10.1073/pnas.92.16.7455
  23. Zalkin, H. and J.E. Dixon. 1992. De novo purine nucleotide biosynthesis. Prog. Nucleic Acid Res. Mol. Biol. 42, 259-287 https://doi.org/10.1016/S0079-6603(08)60578-4