Preparation of Active Human HtrA3 in Eschrichia coli and Comparison of Proteolytic Activity between HtrA1, 2, and 3

Escherichia coli에서 효소활성을 지닌 Human HtrA3 단백질 제조와 HtrA Serine Protease 1, 2와의 효소활성 비교

  • Kim, Ji-Hwan (Research Institute of Molecular Genetics and Department of Biomedical Sciences, College of Medicine the Catholic University of Korea) ;
  • Kim, Goo-Young (Research Institute of Molecular Genetics and Department of Biomedical Sciences, College of Medicine the Catholic University of Korea) ;
  • Nam, Min-Kyung (Research Institute of Molecular Genetics and Department of Biomedical Sciences, College of Medicine the Catholic University of Korea) ;
  • Kim, Sang-Soo (Research Institute of Molecular Genetics and Department of Biomedical Sciences, College of Medicine the Catholic University of Korea) ;
  • Rhim, Hyang-Shuk (Research Institute of Molecular Genetics and Department of Biomedical Sciences, College of Medicine the Catholic University of Korea)
  • 김지환 (가톨릭대학교 생명의과학과, 분자유전학연구소) ;
  • 김구영 (가톨릭대학교 생명의과학과, 분자유전학연구소) ;
  • 남민경 (가톨릭대학교 생명의과학과, 분자유전학연구소) ;
  • 김상수 (가톨릭대학교 생명의과학과, 분자유전학연구소) ;
  • 임향숙 (가톨릭대학교 생명의과학과, 분자유전학연구소)
  • Received : 2009.09.23
  • Accepted : 2009.10.12
  • Published : 2009.12.31

Abstract

To elucidate HtrA3's functional roles in the HtrA3 mediated cellular processes, it is necessary to investigate its biochemical characteristics. In the present study, we constructed the plasmids encoding putative mature HtrA3 proteins (M1-HtrA3 and M2-HtrA3) based on the putative maturation sites of highly homologous HtrA1 and mouse HtrA3. We used the pGEX bacterial expression system to develop a simple and rapid purification for the recombinant HtrA3 protein. Although yields of the mature HtrA3 proteins were slightly low as 10~50 ${\mu}g$/L, the amounts and purity of M1- and M2-HtrA3 were enough to investigate their proteolytic activities. The putative mature HtrA3 proteins have proteolytic activity which could cleave $\beta$-casein as an exogenous substrate. We compared the proteolytic activity between the HtrA family, HtrA1, HtrA2, and HtrA3. The cleavage activity of HtrA3 and HtrA2 were 2 folds higher than that of HtrA1, respectively. Our study provides a method for generating useful reagents to identify natural substrates of HtrA3 in the further studies.

본 연구에서는 Human HtrA3 (HtrA3)의 효소활성을 분자수준에서 연구하기 위해 HtrA간의 상동성과 기존에 알려진 maturation site들을 비교 분석하여 예상 mature HtrA3인 M1-HtrA3와 M2-HtrA3를 발현하는 construct를 제작하였다. pGEX system을 통해 Top10 균주에서 발현, 정제한 M1-HtrA3 단백질은 $10{\mu}g$/L를 정제할 수 있었으며 발현량 대비 1%를 회수할 수 있었다. M2-HtrA3는 M1보다 5배 가량 많은 양을 정제할 수 있었으며 발현량 대비 회수율은 3배 정도 더 높았다. $\beta$-Casein을 이용한 in vitro cleavage test를 통해 M1, M2 form 모두 protease 활성을 갖는 것을 확인하였다. 또한, $\beta$-casein cleavage를 통해 HtrA serein protease들 간의 상대적인 활성을 비교한 결과, HtrA3와 HtrA2는 HtrA1보다 약 2배 더 높은 proteolytic cleavage 활성을 보였다. 본 연구에서 정립한 protease 활성을 지닌 HtrA3의 제작과 정제 조건은 HtrA3의 substrate를 탐색을 용이하게 할 수 있을 것이며, HtrA3 연관된 질환의 발병기전과 세포 신호전달을 이해하는 연구에 활용될 수 있을 것이다.

Keywords

References

  1. Blanco, R., L. Carrasco, and Iv$\acute{a}$n. Ventoso. 2003. Cell killing by HIV-1 protease. J. Biol. Chem. 278, 1086-1093 https://doi.org/10.1074/jbc.M205636200
  2. Bowden, M.A., L.A. Di Nezza-Cossens, T. Jobling, L.A. Salamonsen, and G. Nie. 2006. Serine proteases HTRA1 and HTRA3 are down-regulated with increasing grades of human endometrial cancer. Gynecol. Oncol. 103, 253-260 https://doi.org/10.1016/j.ygyno.2006.03.006
  3. Chiti, F., Niccol $\grave{o}$. Taddei, F. Baroni, C. Capanni, M. Stefani, G. Ramponi, and C.M. Dobson. 2002. Kinetic partitioning of protein folding and aggregation. Nat. Struct. Biol. 9, 137-143 https://doi.org/10.1038/nsb752
  4. Clausen, T., C. Southan, and M. Ehrmann. 2002. The HtrA family of proteases: implications for protein composition and cell fate. Mol. Cell 10, 443-455 https://doi.org/10.1016/S1097-2765(02)00658-5
  5. Hong, S.K., M.K. Cha, and I.H. Kim. 2006. Specific protein interaction of human Pag with Omi/HtrA2 and the activation of the protease activity of Omi/HtrA2. Free Radic. Biol. Med. 40, 275-284 https://doi.org/10.1016/j.freeradbiomed.2005.08.029
  6. Hu, S.I., M. Carozza, M. Klein, P. Nantermet, D. Luk, and R.M. Crowl. 1998. Human HtrA, an evolutionarily conserved serine protease identified as a differentially expressed gene product in osteoarthritic cartilage. J. Biol. Chem. 273, 34406-34412 https://doi.org/10.1074/jbc.273.51.34406
  7. Jiang, J., X. Zhang, Y. Chen, Y. Wu, Z.H. Zhou, Z. Chang, and S.F. Sui. 2008. Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins. Proc. Natl. Acad. Sci. USA 105, 11939-11944 https://doi.org/10.1073/pnas.0805464105
  8. Kim, D.Y. and K.K. Kim. 2005. Structure and function of HtrA family proteins, the key players in protein quality control. J. Biochem. Mol. Biol. 38, 266-274 https://doi.org/10.5483/BMBRep.2005.38.3.266
  9. Kim, K.H., S.S. Kim, G.Y. Kim, and H. Rhim. 2006. Purification of human HtrA1 expressed in E. coli and characterization of its serine protease activity. J. Life Sci. 16, 1133-1140 https://doi.org/10.1016/0024-3205(75)90197-6
  10. Krojer, T., J. Sawa, E. Sch$\ddot{a}$fer, H.R. Saibil, M. Ehrmann, and T. Clausen. 2008. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885-890 https://doi.org/10.1038/nature07004
  11. Mallorqu$\acute{i}$-Fern$\acute{a}$ndez, Noem$\acute{i}$., S.P. Manandhar, G. Mallorqu$\acute{i}$-Fern$\acute{a}$ndez, I. Us$\acute{o}$n, K. Wawrzonek, T. Kantyka, M. Sol$\acute{a}$, I.B. Th$\phi$gersen, J.J. Enghild, J. Potempa, and F.X. Gomis-Ruth. 2008. A new autocatalytic activation mechanism for cysteine proteases revealed by Prevotella intermedia interpain A. J. Biol. Chem. 283, 2871-2882 https://doi.org/10.1074/jbc.M708481200
  12. Murwantoko, M. Yano, Y. Ueta, A. Murasaki, H. Kanda, C. Oka, and M. Kawaichi. 2004. Binding of proteins to the PDZ domain regulates proteolytic activity of HtrA1 serine protease. Biochem. J. 381, 895-904 https://doi.org/10.1042/BJ20040435
  13. Nam, M.K., Y.M. Seong, H.J. Park, J.Y. Choi, S. Kang, and H. Rhim. 2006. The homotrimeric structure of HtrA2 is indispensable for executing its serine protease activity. Exp. Mol. Med. 38, 36-43
  14. Narkiewicz, J., D. Klasa-Mazurkiewicz, D. Zurawa-Janicka, J. Skorko-Glonek, J. Emerich, and B. Lipinska. 2008. Changes in mRNA and protein levels of human HtrA1, HtrA2 and HtrA3 in ovarian cancer. Clin. Biochem. 41, 561-569 https://doi.org/10.1016/j.clinbiochem.2008.01.004
  15. Nie, G., Y. Li, K. Hale, H. Okada, U. Manuelpillai, E.M. Wallace, and L.A. Salamonsen. 2006. Serine peptidase HTRA3 is closely associated with human placental development and is elevated in pregnancy serum. Biol. Reprod. 74, 366-374 https://doi.org/10.1095/biolreprod.105.047324
  16. Nie, G.Y., A. Hampton, Y. Li, J.K. Findlay, and L.A. Salamonsen. 2003. Identification and cloning of two isoforms of human hightemperature requirement factor A3 (HtrA3), characterization of its genomic structure and comparison of its tissue distribution with HtrA1 and HtrA2. Biochem. J. 371, 39-48 https://doi.org/10.1042/BJ20021569
  17. Oka, C., R. Tsujimoto, M. Kajikawa, K. Koshiba-Takeuchi, J. Ina, M. Yano, A. Tsuchiya, Y. Ueta, A. Soma, H. Kanda, M. Matsumoto, and M. Kawaichi. 2004. HtrA1 serine protease inhibits signaling mediated by Tgfβ‚ family proteins. Development 131, 1041-1053 https://doi.org/10.1242/dev.00999
  18. Runyon, S.T., Y. Zhang, B.A. Appleton, S.L. Sazinsky, P. Wu, B. Pan, C. Wiesmann, N.J. Skelton, and S.S. Sidhu. 2007. Structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3. Protein Sci. 16, 2454-2471 https://doi.org/10.1110/ps.073049407
  19. Seong, Y.M., J.Y. Choi, H.J. Park, K.J. Kim, S.G. Ahn, G.H. Seong, I.K. Kim, S. Kang, and H. Rhim. 2004. Autocatalytic processing of HtrA2/Omi is essential for induction of caspase-dependent cell death through antagonizing XIAP. J. Biol. Chem. 279, 37588-37596 https://doi.org/10.1074/jbc.M401408200
  20. Tocharus, J., A. Tsuchiya, M. Kajikawa, Y. Ueta, C. Oka, and M. Kawaichi. 2004. Developmentally regulated expression of mouse HtrA3 and its role as an inhibitor of TGF-$\beta$‚ signaling. Dev. Growth Differ. 46, 257-274 https://doi.org/10.1111/j.1440-169X.2004.00743.x
  21. Vande Walle, L., M. Lamkanfi, and P. Vandenabeele. 2008. The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death Differ. 15, 453-460 https://doi.org/10.1038/sj.cdd.4402291