열처리 조건이 PLLA SDY 섬유의 열적 특성 및 물성에 미치는 영향

Effect of Annealing on the Thermal and Mechanical Properties of PLLA Spin Draw Yarns

  • 김민섭 (숭실대학교 유기신소재.파이버공학과) ;
  • 김영호 (숭실대학교 유기신소재.파이버공학과)
  • Kim, Min-Sup (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Young-Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 투고 : 2009.10.02
  • 심사 : 2009.12.07
  • 발행 : 2009.12.31

초록

Poly(L-lactic acid) (PLLA) filament fibers were prepared by one-step melt spinning process with spin drawing and the effects of the annealing at $100^{\circ}C$ and $120^{\circ}C$ on their thermal and mechanical properties were investigated by using a differential scanning calorimeter (DSC), dynamic mechanical analyzer (DMA), and universal testing machine (UTM). The glass transition temperature ($T_g$) of the PLLA spin draw yarn (SDY) fibers increased with increasing annealing time while the melting temperature ($T_m$) remained unaffected. The birefringence increased with increasing time at both $100^{\circ}C$ and $120^{\circ}C$, indicating the enhanced orientation of the polymers in the fiber. The tenacity of the fibers increased to almost double, while the elongation at break decreased to almost half by 5 minutes annealing at both $100^{\circ}C$ and $120^{\circ}C$. However, annealing time of more than 5 minutes did not affect the tenacity and elongation at break. The boiling water shrinkage (BWS) decreased continuously with increasing time, the increment was larger for the annealing at $120^{\circ}C$ than that at $100^{\circ}C$. A BWS of less than 3% was obtained by annealing at $120^{\circ}C$ for 30 minutes.

키워드

과제정보

연구 과제 주관 기관 : 한국과학재단

참고문헌

  1. R. E. Drumright, P. R. Gruber, and D. E. Henton, 'Polylactic Acid Technology', Adv Mater, 2000, 12, 1841-1846 https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  2. H. Tsuji and Y. Tezuka, 'Stereocomplex Formation between Enantiomeric Poly(lactic acid)s. 12. Spherulite Growth of Low-Molecular-Weight Poly(lactic acid)s from the Melt', Biomacromolecules, 2004, 5, 1181-1186 https://doi.org/10.1021/bm049835i
  3. J. Slager and A. J. Domb, 'Biopolymer Stereocomplexes', Adv Drug Delivery Rev, 2003, 55, 549-583 https://doi.org/10.1016/S0169-409X(03)00042-5
  4. C. Chen, G. Lv, C. Pan, M. Song, C. Wu, D. Guo, X. Wang, B. Chen, and Z. Gu, 'Poly(lactic acid) (PLA) Based Nanocomposites - A Novel Way of Drug-Releasing', Biomed Mater, 2007, 2, L1-L4 https://doi.org/10.1088/1748-6041/2/4/L01
  5. V. Guarino, F. Causa, P. Taddei, M. di Foggia, G. Ciapetti, D. Martini, C. Fagnano, N. Baldini, and L. Ambrosio, 'Polylactic Acid Fiber-Reinforced Polycaprolactone Scaffolds for Bone Tissue Engineering', Biomaterials, 2008, 29, 3662-3670 https://doi.org/10.1016/j.biomaterials.2008.05.024
  6. S. I. Jeong, E. K. Ko, J. Yum, C. H. Jung, Y. M. Lee, and H. Shin, 'Nanofibrous Poly(lactic acid)/Hydroxyapatite Composite Scaffolds for Guided Tissue Regeneration', Macromol Biosci, 2008, 8, 328-338 https://doi.org/10.1002/mabi.200700107
  7. G. J. Wang, K. H. Ho, and C. C. Hsueh, 'Biodegradable Polylactic Acid Microstructures for Scaffold Applications', Microsyst Technol, 2008, 14, 989-993 https://doi.org/10.1007/s00542-007-0482-2
  8. R. P. John, K. M. Nampoothiri, and A. Pandey, 'Solid-State Fermentation for L-Lactic Acid Production from Agro Wastes using Lactobacillus Delbrueckii', Process Biochem, 2006, 41, 759-763 https://doi.org/10.1016/j.procbio.2005.09.013
  9. C. W. Lee, 'Production of D-Lactic acid by Bacterial Fermentation of Rice', Fiber Polym, 2007, 8, 571-578 https://doi.org/10.1007/BF02875992
  10. J. H. Park and Y. S. Nam, 'Corn Fiber', Fiber Technology, 2002, 6, 124-135
  11. S. W. Chun, S. H. Kim, Y. H. Kim, and H. J. Kang, 'The Effect of Thermal History Induced by Melt Spinning on the Mechanical Properties of Polylactic Acid Fibers', Polymer (Korea), 2000, 24, 656-663
  12. C. S. Yoon and D. S. Ji, 'Effects of in vitro Degradation on the Weight Loss and Tensile Properties of PLA/LPCL/ HPCL Blend Fibers', Fiber Polym, 2005, 6, 13-18 https://doi.org/10.1007/BF02875568
  13. M. S. Kim, J. C. Kim, and Y. H. Kim, 'Effects of Take-up Speed on the Structure and Properties of Melt-spun Poly(Llactic acid) Fibers', Polym Adv Technol, 2008, 19, 748-755 https://doi.org/10.1002/pat.1026
  14. C. H. Park, E. Y. Hong, and Y. K. Kang, 'Effects of Spinning Speed and Heat Treatment on the Mechanical Properties and Biodegradability of Poly(lactic acid) Fibers', J Appl Polym Sci, 2007, 103, 3099-3104 https://doi.org/10.1002/app.25417
  15. S. Y. Lee and J. H. Kim, 'Synthesis and Characterization of Linear and Star-shaped Poly(lactic acid) Stereo-block Copolymers', Polymer(Korea), 2000, 24, 638-645
  16. K. S. Kang, B. S. Kim, W. Y. Jang, and B. Y. Shin, 'Morphology, Thermal and Mechanical Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/CMPS Blends', Polymer(Korea), 2009, 33, 164-168
  17. Y. F. Kim, C. N. Choi, Y. D. Kim, K. Y. Lee, and M. S. Lee, 'Compatibilization of Immiscible Poly(L-lactide) and Low Density Polyethylene Blends', Fiber Polym, 2004, 5, 270-274 https://doi.org/10.1007/BF02875524
  18. C. Nakafuku and S. Takehisa, 'Glass Transition and Mechanical Properties of PLLA and PDLLA-PGA Copolymer Blends', J Appl Polym Sci, 2004, 93, 2164-2173 https://doi.org/10.1002/app.20687
  19. W. Hoogsteen, A. R. Postema, A. J. Pennings, and G. ten Brinke, 'Crystal Structure, Conformation, and Morphology of Solution-Spun Poly(L-lactide) Fibers', Macromolecules, 1990, 23, 634-642 https://doi.org/10.1021/ma00204a041
  20. D. Sawai, K. Takahashi, A. Sasashinge, and T. Kanamoto, 'Preparation of Oriented $\beta$-Form Poly(L-lactic acid) by Solid-State Coextrusion: Effect of Extrusion Variables', Macromolecules, 2003, 36, 3601-3605 https://doi.org/10.1021/ma030050z
  21. K. Takahashi, D. Sawai, T. Yokoyama, T. Kanamoto, and S. H. Hyon, 'Crystal Transformation from the $\alpha$- to the $\beta$-Form upon Tensile Drawing of Poly(L-lactic acid)', Polymer, 2004, 45, 4969-4976 https://doi.org/10.1016/j.polymer.2004.03.108