DOI QR코드

DOI QR Code

The Relation Between a Visible-light Photocatalytic Activity of TiO2-xNx and NH3 Amount/the Period of Grinding Time

유성 볼밀을 통해 제조된 TiO2-xNx 광촉매의 가시광 활성도와 NH3양 및 분쇄시간과의 상관 관계

  • Published : 2009.06.28

Abstract

A visible-light photoactive $TiO_{2-x}N_x$ photocatalyst was synthesized successfully by means of cogrinding of anatase-$TiO_2(a-TiO_2)$ in $NH_3$ ambient, followed by heat-treatment at $200^{\circ}C$ in air environment. In general, it is well known that the grinding-operation induces phase transformation of a-$TiO_2$ to rutile $TiO_2$. This study investigates the influence of the amount of $NH_3$ gas on the phase transformation rate of a-$TiO_2$ and enhancement of visible-light photocatalytic activity, and also examines the relation between the photocatalytic activity and the period of grinding time. The phase transformation rate of a-$TiO_2$ to rutile is retarded with the amount of NH3 injected. And the visible-light photocatalytic activity of samples, was more closely related to the period of grinding time than $NH_3$ amount injected, which means that the doping amount of nitrogen into $TiO_2$ more effective to mechanical energy than $NH_3$ amount injected. XRD, XPS, FT-IR, UV-vis, Specific surface area (SSA), NOx decomposition techniques are employed to verify above results more clearly.

Keywords

References

  1. K. I. Hadjiivanov and D. K. Klissurski: Chem. Soc. Rev., 25 (1996) 61 https://doi.org/10.1039/cs9962500061
  2. A. Heller: Acc. Chem. Res., 28 (1995) 503 https://doi.org/10.1021/ar00060a006
  3. A. Linsebigler, G. Lu and J.T. Yates: Chem. Rev., 95 (1995) 735 https://doi.org/10.1021/cr00035a013
  4. S. U. M. Khan, M. Al-shahry, and W. B. Ingler Jr.: Science, 297 (2002), 2243 https://doi.org/10.1126/science.1075035
  5. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: Science, 293 (2001) 269 https://doi.org/10.1126/science.1061051
  6. T. Ohno, T. Mitsui and M. Matsumura: Chem. Lett., 32 (2003) 364 https://doi.org/10.1246/cl.2003.364
  7. I. C. Kang, Q. Zhang, J. Kano, S. Yin, T. Sato and F. Saito: J. Photochem. Photobio. A: Chem., 189 (2007) 232 https://doi.org/10.1016/j.jphotochem.2007.02.003
  8. I. C. Kang, Q. Zhang, S. Yin, T. Sato and F. Saito: Appl. Catal. B: Environ., 80 (2008) 81 https://doi.org/10.1016/j.apcatb.2007.11.005
  9. M. Anpo and M. Takeuchi: J. Catal., 216 (2003) 505 https://doi.org/10.1016/S0021-9517(02)00104-5
  10. H. H. Ou and S. L. Lo: J. Molec. Catal. A: Chem., 275 (2007) 200 https://doi.org/10.1016/j.molcata.2007.05.044
  11. D. C. Hurum, A. G. Agrios and K. A. Gray: J. Phys. Chem. B, 107 (2003) 4545 https://doi.org/10.1021/jp0273934
  12. I. C. Kang, Q. Zhang, S. Yin, T. Sato and F. Saito: Environ. Sci. Technol., 42 (2008) 3622 https://doi.org/10.1021/es702932m
  13. S. X. Li, F. Y. Zheng, W. L. Cai, A. Q. Han and Y. K. Xie: J. Hazard. Mater. B, 135 (2006) 431 https://doi.org/10.1016/j.jhazmat.2005.12.010
  14. I. C. Kang, Q. Zhang, S. Yin, T. Sato and F. Saito: Appl. Catal. B: Environ., 84 (2008) 570 https://doi.org/10.1016/j.apcatb.2008.05.017
  15. O. Diwald, T. L. Thompson, E. G. Goralski, S. D. Walck and J. T. Yates: J. Phys. Chem. B, 108 (2004) 52 https://doi.org/10.1021/jp030529t
  16. X. Wang, S. Meng, X. Zhang, H. Wang, W. Zhong and Q. Du: Chem. Phys. Lett., 444 (2007) 292 https://doi.org/10.1016/j.cplett.2007.07.026
  17. W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan and Z. Zou: Appl. Catal. B: Environ., 69 (2007) 138 https://doi.org/10.1016/j.apcatb.2006.06.015
  18. S. Yin, H. Hasegawa, D. Maeda, M. Ishitsuka and T. Sato: J. Photochem. Photobiol. A: Chem., 163 (2004) 1 https://doi.org/10.1016/S1010-6030(03)00289-2
  19. R. M. Pittman and Alexis T. Bell: Catal. Let., 24 (1994) 1 https://doi.org/10.1007/BF00807369
  20. G. Liu, F. Li, Z. Chen, G. Qing Lu and H. M. Cheng: J. Solid State Chem., 179 (2006) 331 https://doi.org/10.1016/j.jssc.2005.10.030