DOI QR코드

DOI QR Code

A Magneto-optical Trap Below a Dielectric Coated Mirror Surface

  • Yu, Hoon (Department of Physics Education, Korea National University of Education) ;
  • Lee, Lim (Department of Physics Education, Korea National University of Education) ;
  • Lee, Kyung-Hyun (Department of Physics Education, Korea National University of Education) ;
  • Kim, Jung-Bog (Department of Physics Education, Korea National University of Education)
  • 투고 : 2008.02.05
  • 심사 : 2008.04.30
  • 발행 : 2009.06.25

초록

A Magneto-Optical Trap (MOT) for $^{87}Rb$ atoms near the surface of a dielectric coated mirror at the top of a small $20{\times}25{\times}40\;mm^3$ cell has been observed. Two beams of $3.3\;mW/cm^2$ were used for optical cooling and an anti-Helmholtz magnetic field with a spatial gradient of 9.1 G/cm was used for magnetic trapping. The thickness of the mirror coated on a cover glass was less than $100{\mu}m$. The mirror covered the top of a cell and the atom-chip was located outside the vacuum in order to exploit the long life time of the mirror and easy operation of the chip. The trapping position was found 5 mm beneath the mirror surface. The number of trapped atoms was roughly $3{\times}10^7$ atoms and the temperature was approximately a few tens mK. In this paper, we describe the construction of the mirror-MOT in detail.

키워드

참고문헌

  1. A. Einstein, 'Strahlungs-emission und-absorption nach der quantentheorie,' Deutsche Physikalische Gesellschaft 18, 318-323 (1916)
  2. A. Einstein, 'Quantentheorie des einaomigen idealen gasses,' Sitzungsber. Kgl. Preuss. Akad. Wiss. 261-267 (1924)
  3. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Prichard, 'Trapping of neutral sodium atoms with radiation pressure,' Phys. Rev. Lett. 59, 2631-2634 (1987) https://doi.org/10.1103/PhysRevLett.59.2631
  4. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, 'Observation of Bose- Einstein condensation in a dilute atomic vapor,' Science 269, 198-201 (1995) https://doi.org/10.1126/science.269.5221.198
  5. K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, 'Bose-Einstein condensation in a gas of sodium atoms,' Phys. Rev. Lett. 75, 3969-3973 (1995) https://doi.org/10.1103/PhysRevLett.75.3969
  6. W. Hansel, P. Hommelhoff, T. W. Hansch, and J. Reichel, 'Bose-Einstein condensation on a microelectronic chip,' Nature 413, 498-501 (2001) https://doi.org/10.1038/35097032
  7. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, 'Bose-Einstein condensation in a surface microtrap,' Phys. Rev. Lett. 87, 230401-230404 (2001) https://doi.org/10.1103/PhysRevLett.87.230401
  8. S. Du, 'Atom-chip Bose-Einstein condensation in a portable vacuum cell,' JILA Ph. D. thesis (2005)
  9. P. D. Schwindt, 'Magnetic traps and guides for Bose-Einstein condensates on an atom chip-progress toward a coherent atom waveguide beamsplitter,' JILA Ph.D.thesis (2003).
  10. M. A. Clifford, G. P. T. Lancaster, R. H. Mitchell, F. Akerboom and K. Dholakia, 'Realization of a mirror magneto optical trap,' J. Mod. Opt. 48, 1123-1128 (2001) https://doi.org/10.1080/09500340108230979
  11. S. Schneider, A. Kasper, C. V. Hagen, M. Bartenstein, B. Engeser, T. Schumm, I. N. Joseph, R. Folman, L. Feenstra, and J. Schmiedmayer, 'Bose-Einstein in a simple microtrap,' Phys. Rev. A 67, 023612-023615 (2003) https://doi.org/10.1103/PhysRevA.67.023612
  12. J. Reichel, 'Microchip traps and BEC,' Appl. Phys. B 75, 469-487 (2002) https://doi.org/10.1007/s003400200861