DOI QR코드

DOI QR Code

Optomechanical Design of a Compact Imaging Spectrometer for a Microsatellite STSAT3

  • Received : 2009.04.01
  • Accepted : 2009.04.22
  • Published : 2009.06.25

Abstract

A compact imaging spectrometer (COMIS) is currently under development for use in the STSAT3 microsatellite. COMIS images the Earth's surface and atmosphere with ground sampling distances of ${\sim}30m$ in the $18{\sim}62$ spectral bands ($4.0{\sim}1.05{\mu}m$) for the nadir looking at an altitude of 700 km. COMIS has an imaging telescope and an imaging spectrometer box into which three electronics PCBs are embedded. These are designed into a single assembly with dimensions of 35(L) $\times$ 20(W) $\times$ 12(H) $cm^3$ and a mass of 4.3 kg. Optomechanical design efforts are focused on manufacturing ease, alignment, assembly, testing and improved robustness in space environments. Finite element analysis demonstrates that COMIS will survive in launch and space environments and perform the system modulation transfer function (MTF) in excess of 0.29 at the Nyquist frequency of the CCD detector (38.5 lines-per-mm).

Keywords

References

  1. S. H. Lee, J. O. Park, S. W. Rhee, N. H. Myung, D. G. Lee, J. T. Lee, H. C. Bang, G. W. Moon, W. H. Choi, H. S. Kim, G. B. Chung, H. Han, J. H. Park, and J. H. Lee, 'STSAT-3 satellite system,' in Proc. the 2008 KSAS Spring Conference (Pyungchang, Korea, Apr. 2008), pp. 1093-1096
  2. J. H. Lee, C. W. Lee, K. I. Kang, T. S. Jang, H. S. Yang, W. Han, J. O. Park, and S. W. Rhee, 'A compact imaging spectrometer (COMIS) for the microsatellite STSAT3,' Proc. SPIE 6744, 67551C1-8 (2007) https://doi.org/10.1117/12.747737
  3. J. H. Lee, T. S. Jang, H.-S. Yang, and S.-W. Rhee, 'Optical design of a compact imaging spectrometer for STSAT3,' J. Opt. Soc. Korea 12, 262-268 (2008) https://doi.org/10.3807/JOSK.2008.12.4.262
  4. J. H. Lee, Y. M. Kim, J. S. Kim, and Y.-E. Yoo, 'Bare wafer inspection using a knife-edge test,' J. Opt. Soc. Korea 11, 173-176 (2007) https://doi.org/10.3807/JOSK.2007.11.4.173
  5. A. Ahmad, Optomechanical Engineering Handbook (CRC Press LLC, Florida, USA, 1999), Chapter 3
  6. P. Yoder, Opto-mechanical Systems Design (Marcel Dekker, Inc., New York, USA, 1992), Chapter 3
  7. H.-G. Grothues, F. Lehmann, and H. Michaelis, 'A compact very high resolution camera (VHRC) for earth and planetary exploration using a large array (7k $\times$ 8k) CCD,' Acta Astronautica 45, 577-584 (1999) https://doi.org/10.1016/S0094-5765(99)00178-2
  8. B. Capdepuy, F. Leleu, F. Boursereau, P. Parrot, B. Bailly, J. B. Riti, and J. L. Cornu, 'Space optical payloads, new application area for high temperature composites,' Acata Astronautica 41, 825-831 (1997) https://doi.org/10.1016/S0094-5765(97)00192-6
  9. I.-S. Yuk, H. Jin, S. Lee, Y. S. Park, D. H. Lee, U. W. Nam, J. H. Park, W. Y. Han, and J. W. Lee, 'Preliminary optical design of MIRIS, main payload of STSAT-3,' Publications of the Korean Astronomical Society 22, 201-209 (2007) https://doi.org/10.5303/PKAS.2007.22.4.201
  10. H.-K. Cho, J.-K. Seo, N.-H. Myung, 'Modal analysis for the development of composite structure of STSAT-3,' Publication of Korea Society of Aero and Space 36, 1201- 1206 (2008)
  11. www.ansys.com
  12. D. Mugnier, ASAP 5 Users Manual (Arianespace, France, 2000)
  13. P. R. K. Chetty, Satellite Technology and Its Applications (Mcgraw-Hill, USA, 1991)
  14. D. G. Gilmore, Satellite Thermal Control Handbook (Aerospace Corporation Press, USA, 1994)
  15. J.-K. Seo, 'STSAT-3 preliminary design review: spacecraft bus,' STSAT-3 PDR meeting (2008)

Cited by

  1. Stray Light Analysis of High Resolution Camera for a Low-Earth-Orbit Satellite vol.15, pp.1, 2011, https://doi.org/10.3807/JOSK.2011.15.1.052
  2. Prospect for UV observations from the Moon. II. Instrumental design of an ultraviolet imager LUCI vol.362, pp.2, 2017, https://doi.org/10.1007/s10509-017-3010-6
  3. Derivation of the Ambient Nitrogen Dioxide Mixing Ratio over a Traffic Road Site Based on Simultaneous Measurements Using a Ground-based UV Scanning Spectrograph vol.15, pp.1, 2011, https://doi.org/10.3807/JOSK.2011.15.1.096
  4. A very compact imaging spectrometer for the micro-satellite STSAT3 vol.32, pp.14, 2011, https://doi.org/10.1080/01431161003801328
  5. Stray Light Analysis of a Compact Imaging Spectrometer for a Microsatellite STSAT-3 vol.23, pp.4, 2012, https://doi.org/10.3807/KJOP.2012.23.4.167
  6. Opto-mechanisms design of extreme-ultraviolet camera onboard Chang E lunar lander vol.22, pp.13, 2014, https://doi.org/10.1364/OE.22.015932
  7. 2-dimensional Mapping of Sulfur Dioxide and Bromine Oxide at the Sakurajima Volcano with a Ground Based Scanning Imaging Spectrograph System vol.14, pp.3, 2010, https://doi.org/10.3807/JOSK.2010.14.3.204
  8. Measurement of the Internal Structure of an Optical Waveguide Embedded in a Flexible Optical Circuit Board by Enhancing the Signal Contrast of a Confocal Microscope vol.15, pp.1, 2011, https://doi.org/10.3807/JOSK.2011.15.1.009
  9. Optical Noise Removal in the Focal Plane of the Spaceborne Camera vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.278
  10. Environmental Test Results of a Flight Model of a Compact Imaging Spectrometer for a Microsatellite STSAT-3 vol.22, pp.4, 2011, https://doi.org/10.3807/KJOP.2011.22.4.184