Clinical Significance of Reverse Redistribution Phenomenon on Delayed Tc-99m Tetrofosmin Myocardial Perfusion Imaging in Patients with Acute Myocardial Infarction

급성 심근경색 환자의 Tc-99m Tetrofosmin 심근 관류 지연영상에서 관찰되는 역재분포 현상의 임상적 의의

  • Park, Soon-Ah (Department of Nuclear Medicine, Wonkwang University College of Medicine) ;
  • Kim, Dae-Weung (Department of Nuclear Medicine, Wonkwang University College of Medicine) ;
  • Kim, Chang-Guhn (Department of Nuclear Medicine, Wonkwang University College of Medicine) ;
  • Jeong, Jin-Won (Department of Cardiovascular Medicine, Wonkwang University College of Medicine) ;
  • Kim, Nam-Ho (Department of Cardiovascular Medicine, Wonkwang University College of Medicine) ;
  • Yun, Kyeong-Ho (Department of Cardiovascular Medicine, Wonkwang University College of Medicine)
  • 박순아 (원광대학교 의과대학 핵의학과) ;
  • 김대응 (원광대학교 의과대학 핵의학과) ;
  • 김창근 (원광대학교 의과대학 핵의학과) ;
  • 정진원 (원광대학교 의과대학 순환기내과) ;
  • 김남호 (원광대학교 의과대학 순환기내과) ;
  • 김경호 (원광대학교 의과대학 순환기내과)
  • Published : 2009.04.30

Abstract

Purpose: This study was performed to investigate the clinical significance of reverse redistribution(RR) phenomenon detected on delayed Tc-99m tetrofosmin myocardial single photon emission computed tomography(SPEG) in patients with acute myocardial infarction after revascularization. Materials and Methods: A Tc-99m tetrofrosmin myocardial SPECT was performed in 67 consecutive patients after revascularization for acute myocardial infarction. Myocardial SPECT imaging was performed for early imaging at 40 min and for delayed imaging at 180 min after reinjection at myocardial stress. Regional myocardial uptakes were scored by 4-point scoring in the left ventricular wall divided into 17 segments. Reverse redistribution was defined as an increase of more than 2 point in the activity score on the delayed image. Follow-up myocardial SPECT and coronary angiography(CAG) were performed 9 months later. Results: On myocardial SPECT performed following revascularization, RR was observed in 100 of all 319 segments(31%) and in 43 patients(64%). The abnormalities of perfusion and regional wall motion were more severe in the patients with RR compared to those without RR(p<0.05). On follow-up myocardial SPECT, the myocardial perfusion, regional wall motion, and myocardial thickness were significantly improved in the patients with RR(p<0.05) however, these changes were not significant in those without RR. There was no significant difference between the patients with RR and those without RR in the occurrence of restenosis on CAG. Conclusions: In patients with acute myocardial infarction, the regions showing the RR phenomenon on delayed Tc-99m tetrofosmin SPECT may reflect viable myocardium and indicate recovery of salvaged myocardium.

목적: Tc-99m tetrofosmin은 일반적으로 재분포 하지 않는 것으로 알려져 있으나 최근 일부 연구에서 Tc-99m tetrofomin의 재분포 현상이 보고 되고 있다. 본 연구는 재관류 치료를 받은 급성 심근경색 환자의 Tc-99m tetrofosmin 심근 관류 지연영상에서 역재분포 현상을 관찰하고 이에 대한 정량분석 및 추적 검사를 통해 역재분포 현상의 임상적 의의에 대하여 알아보고자 하였다. 대상 및 방법: 급성 심근경색으로 관동맥 중재술을 시행한 67명(남자 46명, 여자 21명, 평균연령 $62{\pm}12.9$세)을 대상으로 게이트 Tc-99m tetrofosmin SPECT영상을 얻었다. 휴식기 조기 영상은 주사 후 40분째 얻었고 부하 후 지연기 영상은 3시간째 촬영하였다. 심근은 단축 영상을 주로 하여17개 분절로 나누어 분석하였고 심근의 혈류감소 정도와 범위, 국소심근벽 운동, 심근벽 두께는 단축 영상을 주로 하여 정상에서 결손까지 4등급으로 분류하여 분절 점수를 매겼다(0: 정상, 1: 약간 감소, 2: 심한 감소, 3: 결손). 조기 영상을 지연기 영상과 비교하여 지연기 영상에서 2점 이상으로 악화되는 분절을 역재분포가 있는 분절로 정의하였다. 대상 환자들은 9개월 후 관동맥 조영술과 게이트 Tc-99m tetrofosmin 심근 관류를 시행하였으며 역재분포가 있었던 경우와 없었던 경우로 나누어 관동맥 재협착 유무와 심근의 혈류감소 정도와 범위, 국소 심근벽 운동, 심근두께. 구혈률을 비교 분석하였다. 결과: 관동맥 중재술을 시행한 급성 심근경색 환자에서Tc-99m tetrofosmin의 역재분포 현상은67명 중 43명으로 64%였으며 391개 분절 중에서는 100개로 31%에서 관찰되었다 심근 혈류의 감소와 범위, 국소 심근벽 운동의 이상과 심근벽 두께의 감소, 구혈률은 역재분포가 있는 심근에서 더 심하였으며 통계학적 의미를 가졌다. 9개월 후 추적검사에서 관동맥 재협착의 발생은 역재분포의 유무에 따른 차이를 보이지 않았지만 Tc-99m tetrofosmin 심근관류 SPECT에서 역재분포를 보이는 심근이 혈류감소의 정도와 범위, 국소 심근벽운동의 이상, 심근 두께의 회복은 유의한 결과를 보였다. 결론: Tc-99m tetrofosmin지연기 영상에서 보이는 역재분포는 관동맥 중재술을 시행한 환자에서 관찰될 수 있으며 재혈관화 된 심근의 생존 가능성과 좌심실 기능의 회복을 예측하는데 추가적인 정보를 제공할 수 있을 것으로 사료되어 Tc-99m tetrofosmin 심근관류 영상의 임상적 유용성을 향상 시킬 수 있을 것으로 기대된다.

Keywords

References

  1. Flamen P, Bossuyt A, Franken PR. Technetiwn-99m tetrofosmin in dipyridamole-stress myocardial SPECT imaging: intraindividual comparison with technetiwn-99m sestamibi. J Nucl Med 1995;36:2009-15
  2. Acampa W, Cuocolo A, Sullo P, Varrone A, Nicolai E, Pace L, et al. Direct comparison of technetium 99m-sestamibi and technetium-99m tetrofosmin cardiac single-photon emission computed tomography in patients with coronary artery disease. J Nucl Cardiol 1998;5:265-74 https://doi.org/10.1016/S1071-3581(98)90128-3
  3. Rigo P, Leclercq B, Itti R, Lahiri A, Braat S. Technetiwn-99m tetrofosmin myocardial imaging: a comparison with thalliwn-201 and angiography. J Nucl Med 1994;35:587-93
  4. Nakajima K, Taki J, Shuke N, Bunko H, Takata S, Hisada K. Myocardial perfusion imaging and dynamic analysis with technetiwn-99m tetrofosmin. J Nucl Med 1993;34:1478-84
  5. Sugihara H, Taniguchi Y, Kinoshita N, Nakamura T, Hirasaki S, Azuma A, et al. Reverse redistribution of Tc-99m tetrofosmin in exercise myocardial SPECT in patients with hypertrophic cardiomyopathy. Ann Nucl Med 1998;12:287-92 https://doi.org/10.1007/BF03164915
  6. Sugihara H, Kinoshita N, Adachi Y, Taniguchi Y, Ohtsuki K, Azuma A, et al. Early and delayed Tc-99m tetrofosmin myocardial SPECT in patients with left boodle branch block. Ann Nucl Med 1998;12:281-6 https://doi.org/10.1007/BF03164914
  7. Sugihara II, Nakagawa T, Yamashita E, Kinoshita N, Ito K, Azuma A, et al. Reverse redistribution of Tc-99m tetrofosmin in patients with acute myocardial infarction. Ann Nucl Med 1999;13:43-7 https://doi.org/10.1007/BF03165428
  8. Arii T, Naruse H, Sakaki T, Masai M, Takahashi K, Ohyanagi M, et al. Reverse redistribution of technetiwn-99m tetrofosmin after acute coronary revascularization in patients with myocardial infarction. J Cardiol 1999;34(Suppl 1):1-8
  9. Takeishi Y, Sukekawa H, Fujiwara S, Ikeno E, Sasaki Y, Tomoike H. Reverse redistribution of technetiwn-99m-sestamibi following direct PTCA in acute myocardial infarction. J Nucl Med 1996;37:1289-94
  10. Silberstein EB, DeVries DE. Reverse redistribution phenomenon in thalliwn-201 stress tests: angiographic correlation and clinical significance. J Nucl Med 1985;26:707-10
  11. Weiss AT, Maddahi J, Lew AS, Shah PK, Ganz W, Swan ill, et al. Reverse redistribution of thalliwn-201: a sign of nontransmural myocardial infarction with patency of the infarct-related coronary artery. J Am Coll Cardiol 1986;7:61-7 https://doi.org/10.1016/S0735-1097(86)80260-1
  12. Langer A, Burns RJ, Freeman MR, Liu P, Morgan CD, Wilson R, et al. Reverse redistribution on exercise thallium scintigraphy: relationship to coronary patency and ventricular function after myocardial infarction. Can J Cardiol 1992;8:709-15
  13. Maddahi J, Berman DS. Reverse redistribution of thalliwn-201. J Nucl Med 1995;36:1019-21
  14. Ohte N, Hashimoto T, Banno T, Narita H, Kobayashi K, Akita S, et al. Clinical significance of reverse redistribution on 24-hour delayed imaging of exercise thalliwn-201 myocardial SPECT: comparison with myocardial fluorine-18 FDG-PET imaging and left ventricular wall motion. J Nucl Med 1995;36:86-92
  15. Ohte N, Hashimoto T, Iida A, Narita H, Akita S. Extent of myocardial damage in regions with reverse redistribution at 3h and at 24h on 201Tl SPET: evaluation based on regional myocardial oxidative metabolism. Nucl Med Commun 1998;19:1081-7 https://doi.org/10.1097/00006231-199811000-00008
  16. Platts EA, North TL, Pickett RD, Kelly JD. Mechanism of uptake of technetiwn-99m tetrofosmin. I: uptake into isolated adult rat ventricular myocytes and subcellular localization. J Nucl Cardiol 1995;2:317-26 https://doi.org/10.1016/S1071-3581(05)80076-5
  17. Younes A, Songadele JA, Maublant J, Platts E, Pickett R, Veyre A. Mechanism of uptake of technetiwn-99m tetrofosmin. II: uptake into isolated adult rat heart mitochondria. J Nucl Cardiol 1995;2:327-33 https://doi.org/10.1016/S1071-3581(05)80077-7
  18. Nakamura K, Sammiya T, Hashimoto J, Ishibashi R, Matsumoto K, Kubo A. Comparison of cationic myocardial perfusion agents: characteristics of accumulation in cultured smooth muscle cells. Ann Nucl Med 1996;10:375-81 https://doi.org/10.1007/BF03164797
  19. Tanaka R, Nakamura T, Chiba S, Ono T, Yoshitani T, Miyamoto A, et al. Clinical implication of reverse redistribution on Tc-99m sestarnibi images for evaluating ischemic heart disease. Ann Nucl Med 2006;20:349-56 https://doi.org/10.1007/BF02987246
  20. Kurokawa K, Ohte N, Miyabe H, Akita S, Yajima K, Hayano J, et al. Reverse redistribution phenomenon on rest Tc-99m tetrofosmin myocardial single photon emission computed tomography involves impaired left ventricular contraction in patients with acute myocardial infarction. Circ J 2003;67:830-4 https://doi.org/10.1253/circj.67.830
  21. Hirata Y, Takamiya M, Kinoshita N, Yamada H, Shima T, Miyazaki H, et al. Interpretation of reverse redistribution of Tc-99m tetrofosmin in patients with acute myocardial infarction. Eur J Nucl Med Mol Imaging 2002;29:1594-9 https://doi.org/10.1007/s00259-002-0968-1
  22. Xiang DC, Yin JL, He JX, Gong ZH. Resting chest pain, pegative treadmill exercise electrocardiogram, and reverse redistribution in dipyridamole myocardial perfusion scintigraphy might be the features of coronary artery spasm. Clin Cardiol 2007;30:522-6 https://doi.org/10.1002/clc.20147