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Abstract. In most of literatures of age replacement policy, the authors consider 
the case that a new item starts operating at time zero and is to be replaced by 
new one at time T. It is, however, often to purchase used items because of the 
limited budget. In this paper, we consider age replacement policy of a used item 
whose age is 0t . The mathematical formulas of the expected cost rate per unit 
time are derived for both infinite-horizon case and finite-horizon case. For each 
case, we show that the optimal replacement age exists and is finite and 
investigate the effect of the age of the used item. 
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1. INTRODUCTION 
 

Since Barlow and Hunter (1960) proposed an age replacement policy in which an 
operating item is replaced at age T or at failure, whichever occurs first, the age 
replacement policy has been extensively studied by incorporating various types of repairs 
at failure and cost structures for repair. Beichelt (1976), Berg, Bienvenu and Cléroux 
(1986), Block, Borges and Savits (1988) Sheu, Kuo and Nakagawa (1993) consider the 
age-replacement problem with age-dependent minimal repair and different cost structures. 
Cleroux, Dubuc and Tilquin (1979) and Bai and Yun, (1986) consider age replacement 
policy based both on the system age and the minimal repair cost. Sheu and Griffith (1996), 
Sheu (1998), Sheu and Chien (2004), Chien, and Sheu (2006) consider age replacement 
policy of system subject to shocks.  Sheu (1991), Sheu, Griffith and Nakagawa (1995), 
Jhang and Sheu (1999) and Sheu, Yeh, Lin and Juang (1999) consider age replacement 
policy with age dependent replacement and random repair cost.  

In most of literatures mentioned, it is noted that the authors consider only the case that 
a new item starts operating at time 0 and investigate the optimal age which minimizes the 
expected cost per unit time.  In practice, it is often that a company purchases used 
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equipments because of the limited budget, however.  Hence, it is important to study the 
age replacement policy of used items. 

In this paper, we consider age replacement policy of a used item in which the item 
whose age is 0t   starts operating at time 0 and is replaced by new one either at failure or at 
time T, whichever come first. We formulate the expected cost per unit time for both the 
infinite-horizon case and the finite-horizon case. We investigate the optimal age 
replacement policy which minimizes the expected cost rate per unit time.   

The remainder of this paper is organized as follows. Section 2 describes the age 
replacement policy of a used item whose age is 0t  and the expected cost per unit time for 
both the infinite-horizon case and the finite-horizon case is formulated. In Section 3, the 
optimal replacement schedule is investigated. In Section 4, a numerical example is given 
to illustrate our results. 

 
 

2.  AGE REPLACEMENT POLICY OF USED ITEM AND ITS EXPECTED 
COST PER UNIT TIME 

 
Let X  be a random variable representing the lifetime of a unit. Let f, F and R be the 

probability density function, distribution function and reliability function of X, 
respectively and let h be the hazard rate of F.  

 
 
 
 
 

 
 
 

Figure 2.1. Age replacement policy of  used item 
 
We consider an age replacement policy of an used item whose age is 0t  as follows. 

The item whose age is 0t  starts operating at time 0 and is replaced by new one either at 
failure or at time T, whichever come first. The age replacement policy of an used item 
considered in this paper is the same as the age replacement policy proposed by Barlow 
and Hunter(1960) except that the age of the item is 0t . Figure 2.1 shows outline of age 
replacement policy of  used item. 
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Let fC  and rC be cost for failure and cost for planned replacement, respectively. 
 
2.1. Expected Cost Per Unit Time for Infinite-Horizon Case 
Long run expected cost C(T) can be defined by using renewal reward theorem as 

follows. [See Ross(1992) for more details] 
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where R is the cost incurred during a cycle and Y is the length of a cycle.  
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Therefore by using the equations (2.1) and (2.2), we have the long run expected cost 

in age replacement policy as follows. 
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Since ]0 0 0 0 000 0 0
( ) ( ) ( ) ( ) ( )

T T TTxf t x dx xF t x F t x dx TF t T F t x dx+ = + − + = + − +∫ ∫ ∫ , we 

can simplify the equation (2.3) and obtain the following long run expected cost. 
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Figure 2.2. Two possible failures and related cost per unit time 
 
2.2 Expected cost per unit time for finite-horizon case 
When the planning time span is finite, we can not apply the renewal reward theorem. 

Sheu, Yeh, Lin and Juang (1999) consider total cost per unit time between two successive 
replacement when the planning time span is finite. We also utilize total cost per unit time 
between two successive replacements for the case that the planning time span is finite. 

We can consider two possible cases of failure as shown in Figure 2.2 and can obtain 
total cost per unit time between two successive replacements at age t0 as follows.  
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Let 

0
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3. OPTIMAL REPLACEMENT SCHEDULE 
 

In this section, we investigate the optimal age *T  for replacement which minimizes 

the expected cost rate per unit time for both infinite-horizon and finite-horizon cases. 
 
3.1 Optimal replacement schedule for infinite-horizon case 
In order to find the optimal replacement age *T  which minimizes the expected long-

run cost per unit time, given in (2.4), we differentiate 
0
( )tC T  with respect to T and set it 

equal to 0. Then, we have  
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Hence the optimal age T* for replacement which minimizes the long-run expected 

cost in (2.4) is the value of T satisfying he following equality. 
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Theorem 3.1. Suppose that h(t0) is strictly increasing to infinity as t0 goes to infinity. 
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minimizes the long-run expected cost in (2.4) and it is unique. 
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Taking a derivative of )(Tξ  with respect to T yields  
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Since h(t0) is strictly increasing, it is clear that 0)(
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 and then )(Tξ  is strictly 
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Hence there exists optimal age T* for replacement which minimizes the long-run 

expected cost in (2.4) and it is unique.  
           

3.2. Optimal replacement schedule for finite-horizon case 
The optimal replacement age *T  for finite-horizon case can be obtained by using 

similar technique in Section 3.1. Taking a derivative of 
0
( )tW T  with respective to T and 

setting it equal to 0 yields 0( ) r

f r

CT h t T
C C

⋅ + =
−

. Hence it is straight forward to show 

the existence and the uniqueness of the optimal age T* for replacement which minimizes 
the expected total cost per unit time in (2.5). That is formally stated in the following 
theorem. 

 
Theorem 3.2. Suppose that h(t) is strictly increasing to infinity as t goes to infinity. 

Then there exists optimal age T* for replacement which minimizes the long-run expected 
cost in (2.5) and it is unique. 

Proof. Since taking a derivative of 
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 and h(t) is strictly increasing to infinity as t increases, 

thee result directly holds.  
 

 
4. NUMERICAL EXAMPLE 

 
Suppose that F is Weibull distribution with scale parameter θ  and shape parameter m.  

Then the reliability function and failure rate function are given by  
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respectively. We assume that 1m >  and 1θ = . Then the hazard rate, )(th , is strictly 

increasing for 0≥t . For any 0 0t ≥ , the reliability function and the hazard rate of the used 
item of the age  0t  are 
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Cost structures are assumed to be as follows.  

• Cost for failure 1000fC =  
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• Cost for replacement r fC p C= ⋅  ( 0.1,0.2,...,0.9)p =  
 
4.1. Infinite-horizon case 
The long run expected cost in age replacement policy of the used item of the age 0t  is 

given by as follows. 
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Optimal replacement age *T  is the value of T satisfying the following equation 
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Table 4.1 shows the values of the optimal replacement age, *T , and their 
corresponding long run expected costs per unit time for various values of the shape 
parameter and various cost structures. In Table 4.1, we consider the ratio of the cost for 
replacement to the cost for failure greater than or equal to 0.5 since small values of the 
ration do not satisfy the condition for the existence of the optimal replacement age for 
given  0 0.5t =  and 1.0 and m=1.5, 3.0 (0.5). It is noted from Table 4.1 that for any values 
of age of the used item and cost structure, the optimal replacement ages tend to decrease 
as the values of the shape parameter increase. That is expected since the larger shape 
parameter is, the  more frequently failures occur.  And it is also observed that for any 
given value of age of the used item and shape parameter, the optimal replacement ages 
tend to increase as the values of ratio of the cost for replacement to the cost for failure 
increase. That means if the cost for replacement is closed to the cost for failure, it is not 
necessary to replace the item before it fails. In other word, the item should be replaced 
before it fails if the cost for failure is higher than the cost for replacement. It is quite 
natural that the optimal replacement age when 0 1.0t =  is shorter than the optimal 
replacement age when 0 0.5t =  since the use item with the age of 0 1.0t =  has less 
remaining life than the use item with the age of 0 0.5t = .  
 

Table 4.1. Optimal replacement age *T  and the long run expected cost  
 /r fC C  m=1.5 m=2.0 m=2.5 m=3.0 

0 0.5t =  

0.5 0.75 0.38 0.30 0.27 
837.8252 876.8725 880.4894 872.0260 

0.6 1.54 0.67 0.47 0.40 
856.8727 930.6502 953.4644 955.8603 

0.7 3.15 1.09 0.71 0.56 
859.0690 952.3762 993.7736 1009.3802 

0.8 7.71 1.90 1.10 0.82 
859.0832 956.2860 1008.0171 1034.5517 
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0.9 32.31 4.29 2.04 1.37 
859.0832 956.3432 1009.2853 39.0519 

0 1.0t =  

0.7 1.04 0.16 - - 
642.0580 693.4491 - - 

0.8 3.62 0.81 0.33 0.15 
644.4557 723.5377 766.3081 787.9535 

0.9 17.46 2.63 1.13 0.65 
644.4562 725.1880 776.2728 811.1656 

           
4.2. Finite-horizon case 
The expected value of the total cost per unit time between two successive 

replacements at age 0t , 
0
( )tW T , is given by 

 
1
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⋅ + ⋅⎢ ⎥− ⎣ ⎦
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And the optimal replacement age *T  is the value of T satisfying the following 

equation 
 

1
0( )m r

f r

CmT t T
C C

−+ =
−

. 

 
Table 4.2 presents the values of the optimal replacement age, *T , and their 

corresponding the expected total costs per unit time for the shape parameter m=1.5, 3.0 
(0.5) and the ratio of the cost for replacement to the cost for failure /r fC C =0.1, 0.9 (0.2). 
Table 4.2 shows that the optimal replacement age tends to decrease as the value of the 
shape parameter increases. And it is also observed that for any given value of age of the 
used item and shape parameter, the optimal replacement ages tend to increase as the 
values of ratio of the cost for replacement to the cost for failure increase. That means if the 
cost for replacement is closed to the cost for failure, it is not necessary to replace the item 
before it fails. In other word, the item should be replaced before it fails if the cost for 
failure is higher than the cost for replacement. It is quite natural that the optimal 
replacement age when 0 1.0t =  is shorter than the optimal replacement age when 0 0.5t =  
since the use item with the age of 0 1.0t =  has less remaining life than the use item with 
the age of 0 0.5t = . 

 
Table 4.2. Optimal replacement age *T  and the expected total cost per unit time 

 /r fC C  m=1.5 m=2.0 m=2.5 m=3.0 

0 0.5t =  0.1 0.10 0.10 0.10 0.10 
8654.3687 8311.2903 7555.7249 6648.2200 
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0.3 0.32 0.28 0.26 0.26 
9556.0866 9290.2940 8559.3967 7646.8724 

0.5 0.63 0.50 0.44 0.41 
9814.6484 9614.8074 8931.0510 8052.0835 

0.7 1.20 0.86 0.71 0.63 
9887.2855 9723.9641 9072.6810 8222.4109 

0.9 3.15 1.89 1.39 1.13 
9895.2383 9740.3889 9098.9900 8259.3873 

0 1.0t =  

0.1 0.08 0.06 0.05 0.04 
11645.1335 14984.8649 18211.1540 21306.3897 

0.3 0.26 0.19 0.15 0.12 
12800.6896 16577.6968 20229.2799 23776.4984 

0.5 0.54 0.37 0.28 0.23 
13102.1316 17016.4224 20805.3218 24494.5569 

0.7 1.08 0.70 0.51 0.40 
13178.3017 17138.6699 20975.0052 24711.7809 

0.9 3.00 1.68 1.15 0.87 
13185.5717 17152.9567 20997.2349 24742.4715  

 
  

 
REFERENCES 

 
Bai, D.S. and Yun, W.Y. (1986). An age replacement policy with minimal repair cost 

limit, IEEE Transactions on Reliability, 35, pp. 452–454. 

Barlow, R.E. and Hunter, L.C. (1960). Optimum preventive maintenance policies, 
Operations Research, 8, pp. 90–100. 

Beichelt, F. (1976). A general preventive maintenance policy, Mathem. Opetations 
Forschung und Statistik, 7, pp. 927–932. 

Berg, M., Bienvenu, M. and Cléroux, R. (1986), Age replacement policy with age-
dependent minimal repair, INFOR, 24, pp. 26–32. 

Block, H.W., Borges, W.S. and Savits, T.H. (1988). A general age replacement model 
with minimal repair, Naval Research Logistics, 35, pp. 365–372. 

Chien, Y.H. and Sheu, S.H. (2006). Extended optimal age-replacement policy with 
minimal repair of a system subject to shocks, European Journal of Operational 
Research,    174,  pp. 169–181. 

Cleroux, R., Dubuc, S. and Tilquin, C. (1979). The age replacement problem with 
minimal repair and random repair costs, Operations Research, 27, pp. 1158-1167. 



 

 

42 
 

Note on Age Replacement Policy of Used Item at Age 0t

 

Jhang, J.P. and Sheu, S.H. (1999). Opportunity-based age replacement policy with 
minimal repair, Reliability Engineering and System Safety, 64, pp. 339–344 

Ross, S.M. (1992) Applied probability models with optimization applications, Courier 
Dover Publications, New York. 

Sheu, S.H. (1991).   A general age replacement model with minimal repair and general 
random repair cost,  Microelectronics & Reliability, 31, pp. 1009-1017. 

Sheu, S.H. (1998).  A generalized age and block replacement of a system subject to 
shocks, European Journal of Operational Research, 108, pp. 345–362. 

Sheu, S.H. and Chien, Y.H. (2004). Optimal age-replacement policy of a system subject to 
hocks with random lead-time, European Journal of Operational Research, 159, pp. 
132–144. 

Sheu, S.H., Kuo, C.M. and Nakagawa, T. (1993). Extended optimal age replacement 
policy with minimal repair, PAIRO Recherche Operationnelle, 27, pp. 337–351. 

Sheu, S.H. and Griffith, W.S. (1996). Optimal number of minimal repairs before 
replacement of a system subject to shocks,  Naval Research Logistics, 43, pp. 319–
333. 

Sheu, S.H., Griffith, W.S. and Nakagawa, T. (1995). Extended optimal replacement model 
with random minimal repair costs, European J. Operational Research, 85, pp. 
636–649. 

Sheu, S.H., Yeh, R.H., Lin, Y.B. and Juang, M.G. (1999). A Bayesian perspective on age 
replacement with minimal repair, Reliability Engineering & System Safety,  65, pp. 
55-64. 




